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response. If the server offered multiple services, we could use this request message to
indicate the service we want, but since the server does only one thing, the content of the
1-byte message doesn’t matter.

If the server isn’t running, the client will block indefinitely in the call to recvfrom.
With the connection-oriented example, the connect call will fail if the server isn’t
running. To avoid blocking indefinitely, we set an alarm clock before calling recvfrom.

]

Example—Connectionless Server

The program in Figure 16.18 is the datagram version of the upt ime server.

#include "apue.h"
#include <netdb.h>
#include <errno.h>
#include <syslog.h>
#include <sys/socket.h>

#define BUFLEN 128
#define MAXADDRLEN 256

#ifndef HOST NAME MAX
#define HOST NAME MAX 256
#endif

extern int initserver (int, struct sockaddr * socklen_t, int) ;

void
serve (int sockfd)

{

int n;

socklen_t alen;

FILE *fp;

char buf [BUFLEN] ;

char abuf [MAXADDRLEN] ;
for (;;) |

alen = MAXADDRLEN;
if ((n = recvfrom(sockfd, buf, BUFLEN, O,
(struct sockaddr *)abuf, &alen)) < 0) {
syslog (LOG_ERR, "ruptimed: recvfrom error: %s",
strerror (errno)) ;

exit (1) ;
if ((fp = popen("/usr/bin/uptime", "r")) == NULL) {
sprintf (buf, "error: %s\n", strerror(errno));

sendto (sockfd, buf, strlen(buf), O,
(struct sockaddr *)abuf, alen);
} else {
if (fgets(buf, BUFLEN, fp) != NULL)
sendto (sockfd, buf, strlen(buf), 0,
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(struct sockaddr *)abuf,
pclose (fp) ;

}

int

main(int argc, char *argvl[])
{

struct addrinfo *ailist, *aip;
struct addrinfo hint;

int sockfd, err, n;
char *host ;
if (argec != 1)

err_quit ("usage: ruptimed");
#ifdef _SC _HOST NAME MAX
n = sysconf(_SC_HOST NAME MAX) ;
if (n < 0) /* best guess */
#endif
n = HOST NAME_ MAX;
host = malloc(n);
if (host == NULL)
err_sys("malloc error");
if (gethostname (host, n) < 0)
err_sys("gethostname error");
daemonize ("ruptimed") ;
hint.ai_flags = AI_CANONNAME;
hint.ai_family = 0;
hint.ai_socktype = SOCK_DGRAM;
hint.ai_protocol = 0;
hint.ai_addrlen = 0;
hint.ai_canonname = NULL;
hint.ai_addr = NULL;
hint.ai_next = NULL; ,
if ((err = getaddrinfo(host, "ruptime"

gai_strerror(err));
exit (1) ;

}

for (aip = ailist; aip != NULL; aip = aip->ai_next) {
if ((sockfd = initserver (SOCK_DGRAM, aip->ai_addr,

aip->ai_addrlen, 0)) >= 0) {
serve (sockfd) ;
exit (0);
}
}

exit (1) ;

alen) ;

&hint,
syslog (LOG_ERR, "ruptimed: getaddrinfo error: §s",

1= 0) {

Figure 16.18 Server providing system uptime over datagrams
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The server blocks in recvErom for a request for service. When a request arrives, we
save the requester’s address and use popen to run the upt ime command. We send the
output back to the client using the sendto function, with the destination address set to
the requester’s address. m]

Socket Options

The socket mechanism provides two socket-option interfaces for us to control the
behavior of sockets. One interface is used to set an option, and another interface allows
us to query the state of an option. We can get and set three kinds of options:

Generic options that work with all socket types

2. Options that are managed at the socket level, but depend on the underlying
protocols for support

3. Protocol-specific options unique to each individual protocol
The Single UNIX Specification defines only the socket-layer options (the first two option

types in the preceding list).
We can set a socket option with the set sockopt function.

#include <sys/socket.h>

int setsockopt (int sockfd, int level, int option, const void *val,
socklen_t len) ;

Returns: 0 if OK, -1 on error

The level argument identifies the protocol to which the option applies. If the option is a
generic socket-level option, then level is set to SOL_SOCKET. Otherwise, level is set to
the number of the protocol that controls the option. Examples are IPPROTO_TCP for
TCP options and IPPROTO_IP for IP options. Figure 16.19 summarizes the generic
socket-level options defined by the Single UNIX Specification.

The val argument points to a data structure or an integer, depending on the option.
Some options are on/off switches. If the integer is nonzero, then the option is enabled.
If the integer is zero, then the option is disabled. The len argument specifies the size of
the object to which val points.

We can find out the current value of an option with the getsockopt function.

#include <sys/socket.h>

int getsockopt (int sockfd, int level, int option, void *restrict wval,
socklen_t *restrict lenp);

Returns: 0 if OK, -1 on error

Note that the lenp argument is a pointer to an integer. Before calling getsockopt, we
set the integer to the size of the buffer where the option is to be copied. If the actual size
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E Option Type of val argument Description ]

SO_ACCEPTCONN | int Return whether a socket is enabled for listening
(getsockopt only).

SO_BROADCAST int Broadcast datagrams if *val is nonzero.

SO_DEBUG int Debugging in network drivers enabled if *val is
nonzero.

SO_DONTROUTE int Bypass normal routing if *val is nonzero.

SO_ERROR int Return and clear pending socket error (get sockopt
only).

SO_KEEPALIVE int Periodic keep-alive messages enabled if *val is
nonzero.

SO_LINGER struct linger Delay time when unsent messages exist and socket is
closed.

SO_OOBINLINE int Out-of-band data placed inline with normal data if *val
is nonzero.

SO_RCVBUF int The size in bytes of the receive buffer.

SO_RCVLOWAT int The minimum amount of data in bytes to return on a
receive call.

S0_RCVTIMEO struct timeval The timeout value for a socket receive call.

SO_REUSEADDR int Reuse addresses in bind if *val is nonzero.

SO_SNDBUF int The size in bytes of the send buffer.

SO_SNDLOWAT int The minimum amount of data in bytes to transmit in a
send call.

SO_SNDTIMEO struct timeval The timeout value for a socket send call.

SO_TYPE int Identify the socket type (get sockopt only).

Figure 16.19 Socket options

of the option is greater than this size, the option is silently truncated. If the actual size
of the option is less than or equal to this size, then the integer is updated with the actual
size on return.

Example

The function in Figure 16.10 fails to operate properly when the server terminates and
we try to restart it immediately. Normally, the implementation of TCP will prevent us
from binding the same address until a timeout expires, which is usually on the order of
several minutes. Luckily, the SO_REUSEADDR socket option allows us to bypass this
restriction, as illustrated in Figure 16.20.

#include "apue.h"

#include <errno.hs

#include <sys/socket.h>

int

initserver (int type, const struct sockaddr *addr, socklen_t alen,
int glen)

{

int fd, err;
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int reuse = 1;

if ((fd = socket (addr-»>sa_ family, type, 0)) < 0)
return{-1);
if (setsockopt (fd, SOL_SOCKET, SO_REUSEADDR, &reuse,
sizeof (int)) < 0) {
err = errno;
goto errout;
}
if (bind(fd, addr, alen) < 0) {
err = errno;
goto errout;
!
if (type == SOCK STREAM || type == SOCK_SEQPACKET) {
if (listen(fd, glen) < 0) {
err = errno;
goto errout;
}
}

return(fd) ;

errout:
close (fd) ;
errno = err;
return(-1);
}

Figure 16.20 Initialize a socket endpoint for use by a server with address reuse

To enable the SO_REUSEADDR option, we set an integer to a nonzero value and pass the
address of the integer as the val argument to setsockopt: We set the len argument to
the size of an integer to indicate the size of the object to which val points. o

Out-of-Band Data

Out-of-band data is an optional feature supported by some communication protocols,
allowing higher-priority delivery of data than normal. Out-of-band data is sent ahead
of any data that is already queued for transmission. TCP supports out-of-band data,
but UDP doesn’t. The socket interface to out-of-band data is heavily influenced by
TCP’s implementation of out-of-band data.

TCP refers to out-of-band data as “urgent” data. TCP supports only a single byte of
urgent data, but allows urgent data to be delivered out of band from the normal data
delivery mechanisms. To generate urgent data, we specify the MSG_OOB flag to any of
the three send functions. If we send more than one byte with the MSG_0OB flag, the last
byte will be treated as the urgent-data byte.

When urgent data is received, we are sent the SIGURG signal if we have arranged
for signal generation by the socket. In Sections 3.14 and 14.6.2, we saw that we could
use the F_SETOWN command to fcntl to set the ownership of a socket. If the third
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argument to £cntl is positive, it specifies a process 1D. If it is a negative value other
than -1, it represents the process group ID. Thus, we can arrange that our process
receive signals from a socket by calling

fcntl (sockfd, F_SETOWN, pid);

The F_GETOWN command can be used to retrieve the current socket ownership. As
with the F_SETOWN command, a negative value represents a process group ID, and a
positive value represents a process ID. Thus, the call

owner = fcntl (sockfd, F_GETOWN, 0);

will return with owner equal to the 1D of the process configured to receive signals from
the socket if owner is positive and with the absolute value of ownexr equal to the ID of
the process group configured to receive signals from the socket if owner is negative.

TCP supports the notion of an urgent mark: the point in the normal data stream
where the urgent data would go. We can choose to receive the urgent data inline with
the normal data if we use the SO _OOBINLINE socket option. To help us identify when
we have reached the urgent mark, we can use the sockatmark function.

#include <sys/socket.h> A ]

int sockatmark (int sockfd) ;

Returns: 1 if at mark, 0 if not at mark, —1 on error

When the next byte to be read is where the urgent mark is located, sockatmark will
return 1.

When out-of-band data is present in a socket’s read queue, the select function
(Section 14.5.1) will return the file descriptor as having an exception condition pending.
We can choose to receive the urgent data inline with the normal data, or we can use the
MSG_OOB flag with one of the recv functions to receive the urgent data ahead of any
other queue data. TCP queues only one byte of urgent data. If another urgent byte
arrives before we receive the current one, the existing one is discarded.

Nonblocking and Asynchronous /O

Normally, the recv functions will block when no data is immediately available.
Similarly, the send functions will block when there is not enough room in the socket’s
output queue to send the message. This behavior changes when the socket is in
nonblocking mode. In this case, these functions will fail instead of blocking, setting
errno to either ENOULDBLOCK or EAGAIN. When this happens, we can use either poll
or select to determine when we can receive or transmit data.

The real-time extensions in the Single UNIX Specification include support for a
generic asynchronous I/O mechanism. The socket mechanism has its own way of
handling asynchronous 1/0, but this isn't standardized in the Single UNIX
Specification. Some texts refer to the classic socket-based asynchronous 1/O mechanism
as “signal-based 1/O” to distinguish it from the asynchronous I/O mechanism in the
real-time extensions.
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With socket-based asynchronous 1/0, we can arrange to be sent the SIGIO signal
when we can read data from a socket or when space becomes available in a socket’s
write queue. Enabling asynchronous 1/0 is a two-step process.

1. Establish socket ownership so signals can be delivered to the proper processes.

2. Inform the socket that we want it to signal us when I/O operations won't block.
We can accomplish the first step in three ways.

1. Use the F_SETOWN command with fcntl.
2. Use the FIOSETOWN command with ioctl.
3. Use the STOCSPGRP command with ioctl.

To accomplish the second step, we have two choices.

1. Usethe F_SETFL command with fcnt1 and enable the O_ASYNC file flag.
2. Use the FIOASYNC command with ioctl.

We have several options, but they are not universally supported. Figure 16.21
summarizes the support for these options provided by the platforms discussed in this
text. We show ® where support is provided and t where support depends on the
particular domain. For example, on Linux, the UNIX domain sockets don’t support
FIOSETOWN or SIOCSPGRP.

i Mechanism POSIX1 || FreeBSD | Linux | MacOS X | Solaris
5.2.1 2.4.22 10.3 9

| fontl(fd, F_SETOWN, pid) . . . . .

| ioctl (£d, FIOSETOWN, pid) . + . .

ioctl(fd, SIOCSPGRP, pid) . t . .

[fentl(fd, F_SETFL, flags|O_ASYNC) . . .

!ioctl(fd, FIOASYNC, &n); . . . .

Figure 16.21 Socket asynchronous I/O management commands
Summary

In this chapter, we looked at the IPC mechanisms that allow processes to communicate
with other processes on different machines as well as within the same machine. We
discussed how socket endpoints are named and how we can discover the addresses to
use when contacting servers.

We presented examples of clients and servers that use connectionless (i.e.,
datagram-based) sockets and connection-oriented sockets. We briefly discussed
asynchronous and nonblocking socket /O and the interfaces used to manage socket
options.

In the next chapter, we will look at some advanced IPC topics, including how we
can use sockets to pass file descriptors between processes running on the same machine.
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Exercises

16.1
16.2

16.3

16.4

16.5

16.6

Write a program to determine your system'’s byte ordering.

Write a program to print out which stat structure members are supported for sockets on at
least two different platforms, and describe how the results differ.

The program in Figure 16.15 provides service on only a single endpoint. Modify the
program to support service on multiple endpoints (each with a different address) at the
same time.

Write a client program and a server program to return the number of processes currently
running on a specified host computer.

In the program in Figure 16.16, the server waits for the child to execute the uptime
command and exit before accepting the next connect request. Redesign the server so that
the time to service one request doesn’t delay the processing of iricoming connect requests.

Write two library routines: one to enable asynchronous 1/0 on a socket and one to disable
asynchronous I/O on a socket. Use Figure 16.21 to make sure that the functions work on all
platforms with as many socket types as possible.
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Advanced IPC

Introduction

In the previous two chapters, we discussed various forms of IPC, including pipes and
sockets. In this chapter, we look at two advanced forms of IPC—STREAMS-based
pipes and UNIX domain sockets—and what we can do with them. With these forms of
IPC, we can pass open file descriptors between processes, servers can associate names
with their file descriptors, and clients can use these names to rendezvous with the
servers. We'll also see how the operating system provides a unique IPC channel per
client. Many of the ideas that form the basis for the techniques described in this chapter
come from the paper by Presotto and Ritchie [1990].

STREAMS-Based Pipes

A STREAMS-based pipe (“STREAMS pipe,” for short) is a bidirectional (full-duplex)
pipe. To obtain bidirectional data flow between a parent and a child, only a single
STREAMS pipe is required.

Recall from Section 15.1 that STREAMS pipes are supported by Solaris and are available in an
optional add-on package with Linux.

Figure 17.1 shows the two ways to view a STREAMS pipe. The only difference
between this picture and Figure 15.2 is that the arrows have heads on both ends; since
the STREAMS pipe is full duplex, data can flow in both directions.

585
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user process user process

3
or i
£4[0] f£d[1] £410)  fd(1] |

L

i N

| stream pipe |a—t— "
R S

kernel
Figure 17.1 Two ways to view a STREAMS pipe
If we look inside a STREAMS pipe (Figure 17.2), we see that it is simply two stream

heads, with each write queue (WQ) pointing at the other’s read queue (RQ). Data
written to one end of the pipe is placed in messages on the other’s read queue.

]
...... |
WQ A - WQ [
fato] | | e
RQ = - RQ !
stream stream
head head

Figure 17.2 Inside a STREAMS pipe

Since a STREAMS pipe is a stream, we can push a STREAMS module onto either
end of the pipe to process data written to the pipe (Figure 17.3). But if we push a
module on one end, we can’t pop it off the other end. If we want to remove it, we need
to remove it from the same end on which it was pushed.

wQ - WQ /——fWQ,

garol | | | .. p fdI1]
Y xQ - R
stream dul stream
head module head

Figure 17.3 Inside a STREAMS pipe with a module
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Assuming that we don’t do anything fancy, such as pushing modules, a STREAMS
pipe behaves just like a non-STREAMS pipe, except that it supports most of the
STREAMS ioctl commands described in streamio(7). In Section 17.2.2, we'll see an
example of pushing a module on a STREAMS pipe to provide unique connections when
we give the pipe a name in the file system.

Example

Let'’s redo the coprocess example, Figure 15.18, with a single STREAMS pipe.
Figure 17.4 shows the new main function. The add2 coprocess is the same
(Figure 15.17). We call a new function, s_pipe, to create a single STREAMS pipe. (We
show versions of this function for both STREAMS pipes and UNIX domain sockets
shortly.)

#include "apue.h"

static void sig_pipe(int); /* our signal handler */
int
main(void)
{
int n;
int fd{2];
pid t pid;
char line [MAXLINE] ;
if (signal (SIGPIPE, sig pipe) == SIG_ERR)

err_sys("signal error");

if (s_pipe(fd) < 0) /* need only a single stream pipe */
err _sys{"pipe error");

if ((pid = fork()) < 0) {
err sys("fork error");

} else if (pid > 0) { /* parent */
close (fd[1]);
while (fgets(line, MAXLINE, stdin) != NULL) {
n = strlen(line);
if (write(fd(0], line, n) != n)

err_sys("write error to pipe");
if ((n = read(£fd4[0], line, MAXLINE}) < 0)
err_sys("read error from pipe");

if (n == 0) {
err msg("child closed pipe");
break;
}
line[n] = 0; /* null terminate */
if (fputs(line, stdout) == EOF)

err_sys("fputs error");
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if (ferrox(stdin))

err_sys("fgets error on stdin");

exit (0);
} else {
close (£4[0]) ;

if (£d[1] != STDIN FILENO &&
dup2 (£d[1], STDIN FILENO)

/* child */

!= STDIN_FILENO)

err_sys("dup2 error to stdin");

if (f£4[1] !'= STDOUT FILENO &&
dup2 (£d{1], STDOUT FILENO) != STDOUT_FILENO)
err_sys("dup2 error to stdout");
if (execl("./add2", "add2", (char *)0) < 0)
err_sys("execl error");
}
exit (0) ;

}

static void
sig_pipe(int signo)

printf ("SIGPIPE caught\n");

exit (1) ;

Figure 17.4 Program to drive the add2 filter, using a STREAMS pipe

The parent uses only £d[0], and the child uses only £d{1]. Since each end of the
STREAMS pipe is full duplex, the parent reads and writes £d[0], and the child
duplicates £d [1] to both standard input and standard output. Figure 17.5 shows the
resulting descriptors. Note that this example also works with full-duplex pipes that are
not based on STREAMS, because it doesn’t make use of any STREAMS features other
than the full-duplex nature of STREAMS-based pipes.

parent

fd[o]

child (coprocess)
stdin

/fd[ll
.

stdout

Figure 17.5 Arrangement of descriptors for coprocess

Rago [1993] covers STREAMS-based pipes in more detail. Recall from Figure 15.1 that
FreeBSD supports full-duplex pipes, but these pipes are not based on the STREAMS

mechanism.

O

We define the function s_pipe to be similar to the standard pipe function. Both
functions take the same argument, but the descriptors returned by s_pipe are open for

reading and writing.
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Example—STREAMS-Based s_pipe Function

Figure 17.6 shows the STREAMS-based version of the s_pipe function. This version
simply calls the standard pipe function, which creates a full-duplex pipe.

#include "apue.h"

/*

* Returns a STREAMS-based pipe, with the two file descriptors
* returned in fd[0] and fd[1].

*/

int

s_pipe(int fd[2])

{
}

return (pipe (£4)) ;

Figure 17.6 STREAMS version of the s_pipe function

17.2.1 Naming STREAMS Pipes

Normally, pipes can be used only between related processes: child processes inheriting
pipes from their parent processes. In Section 15.5, we saw that unrelated processes can
communicate using FIFOs, but this provides only a one-way communication path. The
STREAMS mechanism provides a way for processes to give a pipe a name in the file
system. This bypasses the problem of dealing with unidirectional FIFOs.

We can use the fattach function to give a STREAMS pipe a name in the file
system.

#include <stropts.h>

int fattach(int filedes, const char *path);

Returns: 0 if OK, -1 on error

The path argument must refer to an existing file, and the calling process must either own
the file and have write permissions to it or be running with superuser privileges.

Once a STREAMS pipe is attached to the file system namespace, the underlying file
is inaccessible. Any process that opens the name will gain access to the pipe, not the
underlying file. Any processes that had the underlying file open before fattach was
called, however, can continue to access the underlying file. Indeed, these processes
generally will be unaware that the name now refers to a different file.

Figure 17.7 shows a pipe attached to the pathname /tmp/pipe. Only one end of
the pipe is attached to a name in the file system. The other end is used to communicate
with processes that open the attached filename. Even though it can attach any kind of
STREAMS file descriptor to a name in the file system, the fattach function is most
commonly used to give a name to a STREAMS pipe.
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stream
head

stream
head

/tmp/pipe

Figure 17.7 A pipe mounted on a name in the file system

A process can call fdetach to undo the association between a STREAMS file and
the name in the file system.

——-

| V#include <stropts.h>
|

i int fdetach(const char *path) ;

l Returns: 0 if OK, -1 on error

After fdetach is called, any processes that had accessed the STREAMS pipe by
opening the path will still continue to access the stream, but subsequent opens of the
path will access the original file residing in the file system.

17.2.2 Unique Connections

Although we can attach one end of a STREAMS pipe to the file system namespace, we
still have problems if multiple processes want to communicate with a server using the
named STREAMS pipe. Data from one client will be interleaved with data from the
other clients writing to the pipe. Even if we guarantee that the clients write less than
PIPE_BUF bytes so that the writes are atomic, we have no way to write back to an
individual client and guarantee that the intended client will read the message. With
multiple clients reading from the same pipe, we cannot control which one will be
scheduled and actually read what we send.

The connld STREAMS module solves this problem. Before attaching a STREAMS
pipe to a name in the file system, a server process can push the connld module on the
end of the pipe that is to be attached. This results in the configuration shown in
Figure 17.8.

In Figure 17.8, the server process has attached one end of its pipe to the path
/tmp/pipe. We show a dotted line to indicate a client process in the middle of
opening the attached STREAMS pipe. Once the open completes, 'we have the
configuration shown in Figure 17.9.
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server
process

N

stream
head

client
process

/tmp/pipe ,-' .

stream
head

-t

CONNLD

K4

Figure 17.8 Setting up connld for unique connections

The client process never receives an open file descriptor for the end of the pipe that

it opened. Instead, the operating system creates a new pipe and returns one end to the
client process as the result of opening /tmp/pipe. The system sends the other end of
the new pipe to the server process by passing its file descriptor over the existing
(attached) pipe, resulting in a unique connection between the client process and the
server process. We'll see the mechanics of passing file descriptors using STREAMS
pipes in Section 17.4.1.

stream
head

/tmp/pipe

stream
head

-

CONNLD

pipe

client
process

stream
head

Figure 17.9 Using connld to make unique connections

stream
head




592 Advanced IPC

Chapter 17

The fattach function is built on top of the mount system call. This facility is known as
mounted streams. Mounted streams and the connld module were developed by Presotto and
Ritchie [1990] for the Research UNIX system. These mechanisms were then picked up by

SVR4.

We will now develop three functions that can be used to create unique connections
between unrelated processes. These functions mimic the connection-oriented socket
functions discussed in Section 16.4. We use STREAMS pipes for the underlying
communication mechanism here, but we’ll see alternate implementations of these
functions that use UNIX domain sockets in Section 17.3.

#include "apue.h"

int serv_listen{(const char *name) ;
Returns: file descriptor to listen on if OK, negative value on error

int serv_accept (int listenfd, uid_t *uidptr);

Returns: new file descriptor if OK, negative value on error

int cli_conn(const char *name) ;

Returns: file descriptor if OK, negative value on error

J

The serv_listen function (Figure 17.10) can be used by a server to announce its
willingness to listen for client connect requests on a well-known name (some pathname
in the file system). Clients will use this name when they want to connect to the server.
The return value is the server’s end of the STREAMS pipe.

#include "apue.h"
#include <fcntl.h>
#include <stropts.hs>

/* pipe permissions: user rw, group rw, others rw */
#define FIFO_MODE (S_IRUSR|S_IWUSR|S_IRGRP|S IWGRP|S_IROTH|S_IWOTH)

/*

* Establish an endpoint to listen for connect requests.

* Returns fd if all OK,
*/

int

<0 on error

serv_listen(const char *name)

{

int tempfd;
int fd(2];
/*

* Create a file: mount point for fattach().

*/

unlink (name) ;

if ((tempfd = creat (name, FIFO_MODE)) < 0)

return(-1) ;

if (close(tempfd) < 0)

return(-2);
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if (pipe(fd) < 0)
return{-3);

/*

*+ push connld & fattach() on £d[1].

*/

if (ioctl(fd(1], I_PUSH, "connld") < 0) {

(
close (£4{01);
close (fd[1]);
return(-4) ;

}

if (fattach(fd[1], name) < 0) {
close (£4[0]);
close (£fd[1]);
return(-5) ;

close (£d4{1]); /* fattach holds this end open */

return (£4(0]); /* £4[0] is where client connections arrive */

Figure 17.10 The serv_listen function using STREAMS pipes

The serv_accept function (Figure 17.11) is used by a server to wait for a client’s
connect request to arrive. When one arrives, the system automatically creates a new
STREAMS pipe, and the function returns one end to the server. Additionally, the
effective user ID of the client is stored in the memory to which uidptr points.

#include "apue.h"
#include <stropts.h>
/*
+ Wait for a client connection to arrive, and accept it.
* We also obtain the client’s user ID.
* Returns new fd if all OK, <0 on error.
*/
int
serv_accept (int listenfd, uid_t *uidptr)

{

struct strrecvfd recvid;

if (ioctl(listenfd, I_RECVFD, &recvfd) < 0)

return(-1); /* could be EINTR if signal caught */
if (uidptr != NULL)

*uidptr = recvfd.uid; /* effective uid of caller */
return (recvEd.fd); /* return the new descriptor */

Figure 17.11 The serv_accept function using STREAMS pipes

A client calls c1i_conn (Figure 17.12) to connect to a server. The name argument
specified by the client must be the same name that was advertised by the server’s call to
serv_listen. On return, the client gets a file descriptor connected to the server.
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#include "apue.h"
#include <fcntl.h>
#include <stropts.h>
/ *
* Create a client endpoint and connect to a server.
* Returns fd if all OK, <0 on error.
*/
int
cli_conn{const char *name)
{
int fd;
/* open the mounted stream */
if ((fd = open(name, O_RDWR)) < 0)
return(-1);
if (isastream(fd) == 0) {
close (fd) ;
return(-2);
}
return(fd) ;
}
Figure 17.12 The c1i_conn function using STREAMS pipes
We double-check that the returned descriptor refers to a STREAMS device, in case
the server has not been started but the pathname still exists in the file system. In
Section 17.6, we'll see how these three functions are used.
17.3 UNIX Domain Sockets

UNIX domain sockets are used to communicate with processes running on the same
machine. Although Internet domain sockets can be used for this same purpose, UNIX
domain sockets are more efficient. UNIX domain sockets only copy data; they have no
protocol processing to perform, no network headers to add or remove, no checksums to
calculate, no sequence numbers to generate, and no acknowledgements to send.

UNIX domain sockets provide both stream and datagram interfaces. The UNIX
domain datagram service is reliable, however. Messages are neither lost nor delivered
out of order. UNIX domain sockets are like a cross between sockets and pipes. You can
use the network-oriented socket interfaces with them, or you can use the socketpair
function to create a pair of unnamed, connected, UNIX domain sockets.

#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sockfd([2]) ;

Returns: 0 if OK, -1 on error
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Although the interface is sufficiently general to allow socketpair to be used with
arbitrary domains, operating systems typically provide support only for the UNIX
domain.

Example—s_pipe Function Using UNIX Domain Sockets

Figure 17.13 shows the socket-based version of the s_pipe function previously shown
in Figure 17.6. The function creates a pair of connected UNIX domain stream sockets.

#include "apue.h"
#include <sys/socket.h>

/*

* Returns a full-duplex "stream" pipe (a UNIX domain socket)
* with the two file descriptors returned in fd{0] and fd(1].
*/

int

s_pipe(int £d4(2])

return (socketpair (AF_UNIX, SOCK_STREAM, 0, £d));

Figure 17.13 Socket version of the s_pipe function

Some BSD-based systems use UNIX domain sockets to implement pipes. But when pipe is
called, the write end of the first descriptor and the read end of the second descriptor are both

closed. To get a full-duplex pipe, we must call socketpair directly. O

17.3.1 Naming UNIX Domain Sockets

Although the socketpair function creates sockets that are connected to each other, the
individual sockets don’t have names. This means that they can’t be addressed by
unrelated processes.

In Section 16.3.4, we learned how to bind an address to an Internet domain socket.
Just as with Internet domain sockets, UNIX domain sockets can be named and used to
advertise services. The address format used with UNIX domain sockets differs from
Internet domain sockets, however.

Recall from Section 16.3 that socket address formats differ from one implementation
to the next. An address for a UNIX domain socket is represented by a sockaddr_un
structure. On Linux 2.4.22 and Solaris 9, the sockaddr_un structure is defined in the
header <sys/un.h> as follows:

struct sockaddr_un {
sa_family t sun_family; /* AF_UNIX */
char sun_path([108]; /* pathname */

}i
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On FreeBSD 5.2.1 and Mac OS X 10.3, however, the sockaddr _un structure is defined
as

struct sockaddr un {

unsigned char sun_len; /* length including null */
sa_family t sun_family; /* AF_UNIX */
char sun_path([104]; /* pathname */

bi

The sun_path member of the sockaddr_un structure contains a pathname.
When we bind an address to a UNIX domain socket, the system creates a file of type
S_IFSOCK with the same name.

This file exists only as a means of advertising the socket name to clients. The file
can’t be opened or otherwise used for communication by applications.

If the file already exists when we try to bind the same address, the bind request
will fail. When we close the socket, this file is not automatically removed, so we need to
make sure that we unlink it before our application exits.

Example

The program in Figure 17.14 shows an example of binding an address to a UNIX
domain socket.

#include "apue.h"
#include <sys/socket.h>
#include <sys/un.h>

int
main(void)
int fd, size;
struct sockaddr_un un;

un.sun_family = AF UNIX;
strcpy (un.sun_path, "foo.socket");
if ((fd = socket (AF_UNIX, SOCK STREAM, 0)) < 0)
err_sys("socket failed");
size = offsetof (struct sockaddr_un, sun _path) + strlen{un.sun_path) ;
if (bind(fd, (struct sockaddr *)&un, size) < 0)
err_sys("bind failed");
printf ("UNIX domain socket bound\n");
exit (0);

Figure 17.14 Binding an address to a UNIX domain socket

When we run this program, the bind request succeeds, but if we run the program a
second time, we get an error, because the file already exists. The program won't
succeed again until we remove the file.
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$ ./a.out run the program

UNIX domain socket bound

$ 1s -1 foo.socket look at the socket file
SrwXrwxr-x 1 sar 0 Aug 22 12:43 foo.socket

$ ./a.out try to run the program again
bind failed: Address already in use

$ rm foo.socket remove the socket file

$ ./a.out run the program a third time
UNIX domain socket bound now it succeeds

The way we determine the size of the address to bind is to determine the offset of
the sun_path member in the sockaddr_un structure and add to this the length of the
pathname, not including the terminating null byte. Since implementations vary in what
members precede sun_path in the sockaddr_un structure, we use the offsetof
macro from <stddef .h> (included by apue . h) to calculate the offset of the sun_path
member from the start of the structure. If you look in <stddef.h>, you'll see a
definition similar to the following:

#define offsetof (TYPE, MEMBER) ((int) & ({TYPE *)0) - >MEMBER)

The expression evaluates to an integer, which is the starting address of the member,
assuming that the structure begins at address 0. o

17.3.2 Unique Connections

A server can arrange for unique UNIX domain connections to clients using the standard
bind, listen, and accept functions. Clients use connect to contact the server; after
the connect request is accepted by the server, a unique connection exists between the
client and the server. This style of operation is the same that we illustrated with
Internet domain sockets in Figures 16.14 and 16.15.

Figure 17.15 shows the UNIX domain socket version of the serv_1listen function.

#include "apue.h"
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>

#define QLEN 10

/*
* Create a server endpoint of a connection.
* Returns fd if all OK, <0 on error.
*/

int

serv_listen(const char *name)

{

int fd, len, err, rval;
struct sockaddr_un un;

/* create a UNIX domain stream socket */
if ((fd = socket (AF_UNIX, SOCK_STREAM, 0)) < 0)
return(-1);
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unlink (name) ; /* in case it already exists */

/* fill in socket address structure */

memset (&un, 0, sizeof (un));

un.sun_family = AF_UNIX;

strcpy (un.sun_path, name) ;

len = offsetof (struct sockaddr_un, sun path) + strlen(name);

/* bind the name to the descriptor */

if (bind(fd, (struct sockaddr *)&un, len) < 0) {
rval = -2;
goto errout;

}

if (listen(fd, QLEN) < 0) { /* tell kernel we’'re a server */
rval = -3;
goto errout;

}

return(fd) ;

errout:
err = errno;
close (£4d) ;

errno = err;
return(rval) ;

Figure 17.15 The serv_1listen function for UNIX domain sockets

First, we create a single UNIX domain socket by calling socket. We then fill in a
sockaddr_un structure with the well-known pathname to be assigned to the socket.
This structure is the argument to bind. Note that we don’t need to set the sun_len
field present on some platforms, because the operating system sets this for us using the
address length we pass to the bind function.

Finally, we call listen (Section 16.4) to tell the kernel that the process will be
acting as a server awaiting connections from clients. When a connect request from a
client arrives, the server calls the serv_accept function (Figure 17.16).

#include "apue.h"
#include <sys/socket.h>
#include <sys/un.h>
#include <time.h>
#include <errno.h>

#define STALE 30 /* client’s name can’t be older than this (sec) */
/*

* Wait for a client connection to arrive, and accept it.
* We also obtain the client’s user ID from the pathname
* that it must bind before calling us.

* Returns new fd if all OK, <0 on error

*/
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int
serv_accept {(int listenfd, uid_t *uidptr)

{

int clifd, len, err, rval:
time_t staletime;

struct sockaddr_un un;

struct stat statbuf;

len = sizeof (un);
if ((clifd = accept(listenfd, (struct sockaddr *)s&un, &len)) < 0)
return(-1); /* often errno=EINTR, if signal caught */

/* obtain the client’s uid from its calling address */

len -= offsetof (struct sockaddr_un, sun_path); /* len of pathname */
un.sun path[len] = 0; /* null terminate */

if (stat(un.sun_path, &statbuf) < 0) {
rval = -2;
goto errout;

}

#ifdef S_ISSOCK /* not defined for SVR4 */

if (S_ISSOCK(statbuf.st_mode) == 0) {
rval = -3; /* not a socket */
goto errout;

#endif
if ((statbuf.st mode & (S_IRWXG | S_IRWXO0)) ||
(statbuf.st_mode & S_IRWXU) != S_IRWXU) ({
rval = -4; /* is not rwx------ */
goto errout;
}
staletime = time (NULL) - STALE;

if (statbuf.st_atime < staletime ||
statbuf.st_ctime < staletime ||
statbuf.st_mtime < staletime) {
rval = -5; /* i-node is too old */
goto errout;

}
if (uidptr != NULL)

*uidptr = statbuf.st_uid; /* return uid of caller */
unlink (un.sun_path) ; /* we're done with pathname now */

return(clifd);

errout:
err = errno;
close (clifd);
errno = err;
return(xval) ;

Figure 17.16 The serv_accept function for UNIX domain sockets
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The server blocks in the call to accept, waiting for a client to call c1i_conn.
When accept returns, its return value is a brand new descriptor that is connected to
the client. (This is somewhat similar to what the connld module does with the
STREAMS subsystem.) Additionally, the pathname that the client assigned to its socket
(the name that contained the client’s process ID) is also returned by accept, through
the second argument (the pointer to the sockaddr_un structure). We null terminate
this pathname and call stat. This lets us verify that the pathname is indeed a socket
and that the permissions allow only user-read, user-write, and user-execute. We also
verify that the three times associated with the socket are no older than 30 seconds.
(Recall from Section 6.10 that the time function returns the current time and date in
seconds past the Epoch.)

If all these checks are OK, we assume that the identity of the client (its effective user
ID) is the owner of the socket. Although this check isn’t perfect, it’s the best we can do
with current systems. (It would be better if the kernel returned the effective user ID to
accept as the I_RECVFD ioctl command does.)

The client initiates the connection to the server by calling the c1i_conn function
(Figure 17.17).

#include "apue.h"
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>

#define CLI_PATH "/var/tmp/" /* +5 for pid = 14 chars */
#define CLI_PERM S_IRWXU /* rwx for user only */
/*

* Create a client endpoint and connect to a server.
* Returns fd if all OK, <0 on error.
*/
int .
cli_conn(const char *name)
{
int fd, len, err, rval;
struct sockaddr un un;

/* create a UNIX domain stream socket */
if ((fd = socket(AF_UNIX, SOCK_STREAM, 0}) < 0)
return(-1) ;

/* £ill socket address structure with our address */

memset (&un, 0, sizeof (un));

un.sun_family = AF_UNIX;

sprintf (un.sun_path, "$s%05d4", CLI_PATH, getpid());

len = offsetof (struct sockaddr_un, sun_path) + strlen(un.sun_path);

unlink (un.sun_path) ; /* in case it already exists */
if (bind(fd, (struct sockaddr *)s&un, len) < 0) {
rval = -2;

goto errout;

}

if (chmod (un.sun_path, CLI_PERM) < 0) {
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17.4

rval = -3;
goto errout;

}

/* fill socket address structure with server’s address - */
memset {&un, 0, sizeof (un));
un.sun_family = AF_UNIX;
strcpy (un.sun_path, name);
len = offsetof (struct sockaddr un, sun_path) + strlen(name);
if (connect (fd, (struct sockaddr *)&un, len) < 0) {

rval = -4;

goto errout;

}

return(£4) ;

errout:
err = errno;
close(fd);

errno = err;
return(rval) ;

Figure 17.17 The cli_conn function for UNIX domain sockets

We call socket to create the client’s end of a UNIX domain socket. We then fill in a
sockaddr_un structure with a client-specific name.

We don't let the system choose a default address for us, because the server would
be unable to distinguish one client from another. Instead, we bind our own address, a
step we usually don’t take when developing a client program that uses sockets.

The last five characters of the pathname we bind are made from the process ID of
the client. We call unlink, just in case the pathname already exists. We then call bind
to assign a name to the client’s socket. This creates a socket file in the file system with
the same name as the bound pathname. We call chmod to turn off all permissions other
than user-read, user-write, and user-execute. In serv_accept, the server checks these
permissions and the user ID of the socket to verify the client’s identity.-

We then have to fill in another sockaddr un structure, this time with the
well-known pathname of the server. Finally, we call the connect function to initiate
the connection with the server.

Passing File Descriptors

The ability to pass an open file descriptor between processes is powerful. It can lead to
different ways of designing client-server applications. It allows one process (typically a
server) to do everything that is required to open a file (involving such details as
translating a network name to a network address, dialing a modem, negotiating locks
for the file, etc.) and simply pass back to the calling process a descriptor that can be
used with all the I/O functions. All the details involved in opening the file or device
are hidden from the client. ‘
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We must be more specific about what we mean by “passing an open file descriptor”
from one process to another. Recall Figure 3.7, which showed two processes that have
opened the same file. Although they share the same v-node, each process has its own
file table entry.

When we pass an open file descriptor from one process to another, we want the
passing process and the receiving process to share the same file table entry. Figure 17.18
shows the desired arrangement.

process table entry

fd fil
flags pm’neter
fd 0:
fd 1: file table
fd 2: "] filestatus
fd 3 ile status flags
current file offset v-node table
v-node pointer 4 v-node
T information
i-node
information
process table entry current file size

fd file
ﬂa(gs poil nter /

fd
fd 1:
fd 2:
fd 3:

fd +: s

Figure 17.18 Passing an open file from the top process to the bottom process

Technically, we are passing a pointer to an open file table entry from one process to
another. This pointer is assigned the first available descriptor in the receiving process.
(Saying that we are passing an open descriptor mistakenly gives the impression that the
descriptor number in the receiving process is the same as in the sending process, which
usually isn’t true.) Having two processes share an open file table is exactly what
happens after a fork (recall Figure 8.2).

What normally happens when a descriptor is passed from one process to another is
that the sending process, after passing the descriptor, then closes the descriptor. Closing
the descriptor by the sender doesn’t really close the file or device, since the descriptor is
still considered open by the receiving process (even if the receiver hasn't specifically
received the descriptor yet).
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We define the following three functions that we use in this chapter to send and
receive file descriptors. Later in this section, we’ll show the code for these three
functions for both STREAMS and sockets.

#include "apue.h"
int send fd(int fd, int fd_to_send) ;
int send err(int fd, int status, const char *errmsg);
Both return: 0 if OK, ~1 on error

int recv_fd(int fd, ssize_t (*userfunc) (int, const void *, size_t));

Returns: file descriptor if OK, negative value on error

A process (normally a server) that wants to pass a descriptor to another process
calls either send fd or send_err. The process waiting to receive the descriptor (the
client) calls recv_£d.

The send_fd function sends the descriptor fd_to_send across using the STREAMS
pipe or UNIX domain socket represented by fd.

We'll use the term s-pipe to refer to a bidirectional communication channel that could be
implemented as either a STREAMS pipe or a UNIX domain stream socket.

The send_err function sends the errmsg using fd, followed by the status byte. The
value of status must be in the range -1 through -255.

Clients call recv_fd to receive a descriptor. If all is OK (the sender called
send_fd), the non-negative descriptor is returned as the value of the function.
Otherwise, the value returned is the status that was sent by send_err (a negative value
in the range 1 through —255). Additionally, if an error message was sent by the server,
the client’s userfunc is called to process the message. The first argument to userfunc is
the constant STDERR_FILENO, followed by a pointer to the error message and its
length. The return value from userfunc is the number of bytes written or a negative
number on error. Often, the client specifies the normal write function as the userfunc.

We implement our own protocol that is used by these three functions. To send a
descriptor, send_£d sends two bytes of 0, followed by the actual descriptor. To send an
error, send_err sends the errmsg, followed by a byte of 0, followed by the absolute
value of the status byte (1 through 255). The recv_£d function reads everything on the
s-pipe until it encounters a null byte. Any characters read up to this point are passed to
the caller’s userfunc. The next byte read by recv_£d is the status byte. If the status
byteis 0, a descriptor was passed; otherwise, there is no descriptor to receive.

The function send_err calls the send_£d function after writing the error message
to the s-pipe. This is shown in Figure 17.19.

#include "apue.h"

/*

* Used when we had planned to send an fd using send_£fd(),

* but encountered an error instead. We send the error back
* using the send_fd()/recv_fd() protocol.

*/
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int
send_err (int £d, int errcode, const char *msg)

{

int n;

if ((n = strlen{msg)) > 0)
if (writen(fd, msg, n) != n) /* send the error message */
return(-1);

if (errcode >= 0)
errcode = -1; /* must be negative */

if (send_fd(fd, errcode) < 0)
return(-1);

return(0);

Figure 17.19 The send_err function

In the next two sections, we'll look at the implementation of the send fd and
recv_f£d functions.

17.4.1 Passing File Descriptors over STREAMS-Based Pipes

With STREAMS pipes, file descriptors are exchanged using two ioctl commands:
I_SENDFD and I_RECVFD. To send a descriptor, we set the third argument for ioctl
to the actual descriptor. This is shown in Figure 17.20.

#include "apue.h"
#include <stropts.h>

/*

* Pass a file descriptor to another process.

* If £4<0, then -fd is sent back instead as the error status.
*/

int

send_fd(int fd, int fd_to_send)

{

char buf [2] ; /* send_fd() /recv_£fd() 2-byte protocol */
buf [0] = 0; /* null byte flag to recv_fd() */
if (fd_to_send < 0) ({

buf[1] = -fd_to_send; /* nonzero status means error */

if (buf[1] == 0)

buf (1] = 1; /* -256, etc. would screw up protocol */

} else {

buf (1] = 0; /* zero status means OK */
}
if (write(fd, buf, 2) != 2)

return(-1) ;



Section 17.4 Passing File Descriptors 605

if (fd _to_send >= 0)
if (ioctl(fd, I_SENDFD, fd_to_send) < 0)
return(-1);
return(0) ;

Figure 17.20 The send_fd function for STREAMS pipes

When we receive a descriptor, the third argument for ioctl is a pointer to a
strrecvfd structure:

struct strrecvfd {

int fd; /* new descriptor */
uid_t uid; /* effective user ID of sender */
gid t gid; /* effective group ID of sender */

char fili(s]:
}i
The recv fd function reads the STREAMS pipe until the first byte of the 2-byte
protocol (the null byte) is received. When we issue the I_RECVFD ioctl command,
the next message on the stream head’s read queue must be a descriptor from an
I_SENDFD call, or we get an error. This function is shown in Figure 17.21. :

#include "apue.h"
#include <stropts.h>
/*
* Receive a file descriptor from another process (a server).
*+ In addition, any data received from the server is passed
* to (*userfunc) (STDERR_FILENO, buf, nbytes). We have a
* 2-byte protocol for receiving the fd from send fd().
*/
int
recv_fd(int fd, ssize_t (*userfunc) (int, const void *, size_t))

{

int newfd, nread, flag, status;
char *ptr;

char buf [MAXLINE] ;

struct strbuf dat;

struct strrecvfd recvid;

status = -1;

for ( ; ;) |

dat.buf = buf;

dat .maxlen = MAXLINE;

flag = 0;

if (getmsg(fd, NULL, &dat, &flag) < 0)
err_sys ("getmsg error");

nread = dat.len;

if (nread == 0) {
err_ret ("connection closed by server");
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return(-1);

}

/*
* See if this is the final data with null & status.
* Null must be next to last byte of buffer, status
* byte is last byte. Zero status means there must
* be a file descriptor to receive.

*/
for (ptr = buf; ptr < &buf[nread]; ) {
if (*ptr++ == 0) {
if (ptr != &buf[nread-1)})
err dump ("message format error");
status = *ptr & OxFF; /* prevent sign extension */
if (status == 0) {
if (ioctl(fd, I_RECVFD, &recvfd) < 0)
return(-1);
newfd = recvfd.fd; /* new descriptor */
} else {
newfd = -status;
}
nread -= 2;
}
}
if (nread > 0)
if ((*userfunc) (STDERR_FILENO, buf, nread) != nread)
return(-1i);
if (status >= 0) /* final data has arrived */
return(newfd); /* descriptor, or -status */

Figure 17.21 The recv_£d function for STREAMS pipes

17.4.2 Passing File Descriptors over UNIX Domain Sockets

To exchange file descriptors using UNIX domain sockets, we call the sendmsg(2) and
recvmsg(2) functions (Section 16.5). Both functions take a pointer to a msghdr
structure that contains all the information on what to send or receive. The structure on
your system might look similar to the following:

struct msghdr {

void *msg_name; /* optional address */

socklen_t msg_namelen; /* address size in bytes */
struct iovec *msg_iov; /* array of I/O buffers */

int msg_iovlen; /* number of elements in array */
void *msg_control; /* ancillary data */

socklen t msg_controllen; /* number of ancillary bytes */

int msg_flags; /* flags for received message */
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The first two elements are normally used for sending datagrams on a network
connection, where the destination address can be specitied with each datagram. The
next two elements allow us to specify an array of buffers (scatter read or gather write),
as we described for the readv and writev functions (Section 14.7). The msg_flags
field contains flags describing the message received, as summarized in Figure 16.13.

Two elements deal with the passing or receiving of control information. The
msg_control field points to a cmsghdr (control message header) structure, and the
msg_controllen field contains the number of bytes of control information.

struct cmsghdr {

socklen_ t cmsg_len; /* data byte count, including header */
int cmsg_level; /* originating protocol * /
int cmsg_type; /* protocol-specific type */

/* followed by the actual control message data */

b

To send a file descriptor, we set cmsg_len to the size of the cmsghdr structure,
plus the size of an integer (the descriptor). The cmsg level field is set to
SOL_SOCKET, and cmsg_type is set to SCM_RIGHTS, to indicate that we are passing
access rights. (SCM stands for socket-level control message.) Access rights can be passed
only across a UNIX domain socket. The descriptor is stored right after the cmsg_type
field, using the macro CMSG_DATA to obtain the pointer to this integer.

Three macros are used to access the control data, and one macro is used to help
calculate the value to be used for cmsg_len.

#include <sys/socket.h>
unsigned char *CMSG_DATA({struct cmsghdr *cp) ;

Returns: pointer to data associated with cmsghdr structure
struct cmsghdr *CMSG_FIRSTHDR (struct msghdr *mp); )

Returns: pointer to first cmsghdx structure associated
with the msghdr structure, or NULL if none exists

struct cmsghdr *CMSG_NXTHDR (struct msghdr *mp,
struct cmsghdr *cp);

Returns: pointer to next cmsghdr structure associated with
the msghdr structure given the current cmsghdr
structure, or NULL if we're at the last one

unsigned int CMSG_LEN (unsigned int nbytes);

Returns: size to allocate for data object nbytes large

The Single UNIX Specification defines the first three macros, but omits CMSG_LEN.

The CMSG_LEN macro returns the number of bytes needed to store a data object of size
nbytes, after adding the size of the cmsghdr structure, adjusting for any alignment
constraints required by the processor architecture, and rounding up.
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The program in Figure 17.22 is the send_£d function for UNIX domain sockets.

#include "apue.h"
#include <sys/socket.h>

/* size of control buffer to send/recv one file descriptor */
#define CONTROLLEN CMSG_LEN (sizeof (int))

static struct cmsghdr *cmptr = NULL; /* malloc’ed first time */
/*

* Pass a file descriptor to another process.
* If fd<0, then -fd is sent back instead as the error status.

*/
int
send_fd(int fd, int fd to_send)
{
struct iovec iov([1];
struct msghdr msg;
char buf [2]; /* send_fd()/recv_£fd() 2-byte protocol */
iov[0].iov_base = buf;
iov([0] .iov_len = 2;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;

msg.msg_namelen 0;
if (fd_to_send < 0) {

msg.msg_control = NULL;
msg.msg_controllen = 0;
buf[1] = -fd_to_send; /* nonzero status means error */
if (buf (1] == 0)
buf (1] = 1; /* -256, etc. would screw up protocol */
} else {
if (cmptr == NULL && (cmptr = malloc (CONTROLLEN)) == NULL)
return(-1);
cmptr->cmsg_level = SOL_SOCKET;
cmptr->cmsg_type = SCM_RIGHTS;
cmptr->cmsg_len = CONTROLLEN;
msg.msg_control = cmptr;
msg.msg_controllen = CONTROLLEN;
*(int *)CMSG_DATA (cmptr) = fd_to_send; /* the fd to pass */
buf [1] = 0; /* zero status means OK */
}
buf [0] = 0; /* null byte flag to recv_fd() */
if (sendmsg(fd, &msg, 0) != 2)
return(-1);
return(0) ;

Figure 17.22 The send_£d function for UNIX domain sockets
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In the sendmsg call, we send both the protocol data (the null and the status byte) and
the descriptor.

To receive a descriptor (Figure 17.23), we allocate enough room for a cmsghdr
structure and a descriptor, set msg_control to point to the allocated area, and call
recvmsg. We use the CMSG_LEN macro to calculate the amount of space needed.

We read from the socket until we read the null byte that precedes the final status
byte. Everything up to this null byte is an error message from the sender. This is shown
in Figure 17.23.

#include "apue.h"
#include <sys/socket.h> /* struct msghdr */

/* size of control buffer to send/recv one file descriptor */
#define CONTROLLEN CMSG_LEN (sizeof (int))

static struct cmsghdr *cmptr = NULL; /* malloc’ed first time */

/*

* Receive a file descriptor from a server process. Also, any data
* received is passed to (*userfunc) (STDERR_FILENO, buf, nbytes).

* We have a 2-byte protocol for receiving the fd from send fd().

*/
int
recv_fd(int fd, ssize_t (*userfunc) (int, const void *, size t))
{
int newfd, nr, status;
char *ptr;
char buf [MAXLINE] ;
struct iovec iov[1];

struct msghdr msg;

status = -1;

for ( ; ;) |
iov[0] .iov_base
iov[0] .iov_len

buf;
sizeof (buf) ;

msg.msg_iov = iov;

msg.msg_iovlen = 1;

msg.msg_name = NULL;

msg.msg namelen = 0;

if (cmptr == NULL && {(cmptr = malloc (CONTROLLEN)) == NULL)
return(-1);

msg.msg_control = cmptr;

i

msg.msg_controllen = CONTROLLEN;
if ((nr = recvmsg(fd, &msg, 0)) < 0) {
err_sys ("recvmsg error");

} else if (nr == 0) ({
err_ret ("connection closed by server");
return(-1);

}

/*

* See if this is the final data with null & status. Null
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* is next to last byte of buffer; status byte is last byte.
* Zero status means there is a file descriptor to receive.

*/
for (ptr = buf; ptr < &buflnr]; ) {
if (*ptr++ == ) {
if (ptr != &bufnr-1])
err_dump ("message format error");
status = *ptr & OXFF; /* prevent sign extension */
if (status == 0) {
if (msg.msg controllen != CONTROLLEN)
err_dump("status = 0 but no fd");
newfd = *(int *)CMSG_DATA (cmptr) ;
} else {
newfd = -status;
}
nr -= 2;
}
}
if (nr > 0 && (*userfunc) (STDERR_FILENO, buf, nr) != nr)
return(-1) ;
if (status >= 0) /* final data has arrived */
return(newfd); /* descriptor, or -status */

Figure 17.23 The recv_£fd function for UNIX domain sockets

Note that we are always prepared to receive a descriptor (we set msg _control and
msg_controllen before each call to recvmsg), but only if msg controllen is
nonzero on return did we receive a descriptor.

When it comes to passing file descriptors, one difference between UNIX domain
sockets and STREAMS pipes is that we get the identity of the sending process with
STREAMS pipes. Some versions of UNIX domain sockets provide similar functionality,
but their interfaces differ.

FreeBSD 5.2.1 and Linux 2.4.22 provide support for sendirig credentials over UNIX domain
sockets, but they do it differently. Mac OS X 10.3 is derived in part from FreeBSD, but has
credential passing disabled. Solaris 9 doesn’t support sending credentials over UNIX domain
sockets.

With FreeBSD, credentials are transmitted as a cmsgcred structure:
#define CMGROUP_MAX 16

struct cmsgcred {

pid_t cmcred pid; /* sender’s process ID */
uid t cmcred uid; /* sender’s real UID */
uid_t cmcred_euid; /* sender’s effective UID */
gid t cmcred _gid; /* sender’s real GID */
short cmcred ngroups; /* number of groups */

gid_t cmcred_groups [CMGROUP MAX]; /* groups */
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When we transmit credentials, we need to reserve space only for the cmsgcred
structure. The kernel will fill it in for us to prevent an application from pretending to
have a different identity.

On Linux, credentials are transmitted as a ucred structure:

struct ucred {
uint32_t pid; /* sender’s process ID */
uint32 t wuid; /* sender’'s user ID */
uint32 t gid; /* sender’s group ID */

}i

Unlike FreeBSD, Linux requires that we initialize this structure before transmission.
The kernel will ensure that applications either use values that correspond to the caller or
have the appropriate privilege to use other values.

Figure 17.24 shows the send_£d function updated to include the credentials of the
sending process.

#include "apue.h"
#include <sys/socket.h>

#i7 defined (SCM_CREDS) /* BSD interface */
#define CREDSTRUCT cmsgcred

#define SCM_CREDTYPE SCM_CREDS

#elif defined(SCM_CREDENTIALS) /* Linux interface */
#define CREDSTRUCT ucred

#define SCM_CREDTYPE SCM_CREDENTIALS

#else

#error passing credentials is unsupported!

#endif

/* size of control buffer to send/recv one file descriptor */
#define RIGHTSLEN CMSG_LEN (sizeof (int))

#define CREDSLEN CMSG_LEN (sizeof (struct CREDSTRUCT) )
#define CONTROLLEN (RIGHTSLEN + CREDSLEN)

static struct cmsghdr *cmptr- = NULL; /* malloc’ed first time */
/t
* Pass a file descriptor to another process.
* If fd<0, then -fd is sent back instead as the error status.
*/
int
send fd(int fd, int £fd_to_send)

{

struct CREDSTRUCT *credp;

struct cmsghdr *cmp ;

struct iovec iov([1];

struct msghdr msg;

char buf [2]; /* send fd/recv_ufd 2-byte protocol */
iov[0] .iov_base = buf;

iov[0].iov_len = 2;

msg.msg_iov = iov;

msg.msg_iovlien = 1;
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msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_flags = 0; -
if (fd_to send < 0) {
msg.msg_control = NULL;
msg.msg_controllen = 0;
buf [1] = -fd_to_send; /* nonzero status means error */
if (buf[1] == 0)
buf [1] = 1; /* -256, etc. would screw up protocol */
} else {
if (cmptr == NULL && (cmptr = malloc (CONTROLLEN)) == NULL)

return(-1);

msg.msg_control = cmptr;
msg.msg_controllen = CONTROLLEN;

cmp = cmptr;

cmp->cmsg_level = SOL_SOCKET;
cmp->cmsg_type = SCM_RIGHTS;

cmp->cmsg_len = RIGHTSLEN;

*(int *)CMSG_DATA(cmp) = fd_to_send; /* the fd
cmp = CMSG_NXTHDR (&msg, cmp) ;
cmp->cmsg_level = SOL_SOCKET;
cmp->cmsg_type = SCM_CREDTYPE;
cmp->cmsg_len = CREDSLEN;

credp = (struct CREDSTRUCT *)CMSG_DATA (cmp) ;

#if defined(SCM_CREDENTIALS)
credp->uid = geteuid();

credp->gid = getegid() ;
credp->pid = getpid() ;
#endif
buf {1] = 0; /* zero status means OK */
}
buf[0] = 0; /* null byte flag to recv_ufd() */
if (sendmsg(fd, &msg, 0) != 2)
return(-1);
return(0) ;

to pass */

Figure 17.24 Sending credentials over UNIX domain sockets

Note that we need to initialize the credentials structure only on Linux.

The function in Figure 17.25 is a modified version of recv_fd, called recv_ufd,

that returns the user ID of the sender through a reference parameter.

#include "apue.h"
#include <sys/socket.h> /* struct msghdr */
#include <sys/un.h>

#if defined (SCM_CREDS) /* BSD interface */
#define CREDSTRUCT cmsgcred
#define CR_UID cmcred_uid

#define CREDOPT LOCAL_PEERCRED
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#define SCM CREDTYPE SCM_CREDS

#elif defined(SCM_CREDENTIALS) /* Linux interface */
#define CREDSTRUCT ucred

#define CR_UID uid

#define CREDOPT SO_PASSCRED

#define SCM CREDTYPE SCM_CREDENTIALS

#else

#error passing credentials is unsupported!

#endif

/* size of control buffer to send/recv one file descriptor */
#define RIGHTSLEN CMSG_LEN(sizeof (int))

#define CREDSLEN CMSG_LEN (sizeof (struct CREDSTRUCT))
#define CONTROLLEN (RIGHTSLEN + CREDSLEN)

static struct cmsghdr *cmptr = NULL; /* malloc’ed first time */
/*
* Receive a file descriptor from a server process. Also, any data
* received is passed to (*userfunc) (STDERR_FILENO, buf, nbytes).
* We have a 2-byte protocol for receiving the fd from send fd().
*/ :
int
recv_ufd(int fd, uid_t *uidptr,
ssize_t (*userfunc) (int, const void *, size_t))

{
struct cmsghdr *cmp ;
struct CREDSTRUCT *credp;
int newfd, nr, status;
char *ptr;
char buf [MAXLINE] ;
struct iovec iov[1];
struct msghdr msg;
const int on = 1;
status = -1;
newfd = -1;

if (setsockopt (fd, SOL_SOCKET, CREDOPT, &on, sizeof (int)) < 0) {
err_ret ("setsockopt failed");
return(-1);

for ( ; ;) |
iov[0] .iov_base = buf;
iov[0] .iov_len = sizeof (buf);
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;
msg.msg namelen = 0; ‘
if (cmptr == NULL && (cmptr = malloc (CONTROLLEN)) == NULL)
return(-1);
msg.msg_control = cmptr;

msg.msg_controllen = CONTROLLEN;
if ((nr = recvmsg(fd, &msg, 0)) < 0) {
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err_sys("recvmsg error");

} else if (nr == 0) {
err ret ("connection closed by server");
return(-1);

/*
* See if this is the final data with null & status. Null
* is next to last byte of buffer; status byte is last byte.
* Zero status means there is a file descriptor to receive.

*/
for (ptr = buf; ptr < &bufinrl; ) ({
if (*ptr++ == 0) {
if (ptr != &buf[nr-1])
err_dump("messagé format error");
status = *ptr & OXFF; /* prevent sign extension */
if (status == 0) {
if (msg.msg_controllen != CONTROLLEN)
err dump("status = 0 but no f£d");
/* process the control data */
for (cmp = CMSG_FIRSTHDR (&msg) ;
cmp != NULL; cmp = CMSG_NXTHDR (&msg, cmp)) {
if (cmp->cmsg level != SOL_SOCKET)
continue;
switch (cmp->cmsg_type) {
case SCM_RIGHTS:
newfd = *(int *)CMSG_DATA (cmp) ;
break;
case SCM_CREDTYPE:
credp = (struct CREDSTRUCT *)CMSG_DATA (cmp) ;
*uidptr = credp->CR_UID;
}
}
} else {
newfd = -status;
}
nr -= 2;
}
}
if (nr > 0 && (*userfunc) (STDERR_FILENO, buf, nr) != nr)
return(-1) ;
if (status >= 0) /* final data has arrived */
return(newfd); /* descriptor, or -status */

Figure 17.25 Receiving credentials over UNIX domain sockets

On FreeBSD, we specify SCM_CREDS to tranSmit credentials; on -Linux, we use

SCM_CREDENTIALS.

Chapter 17
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17.5 An Open Server, Version 1

Using file descriptor passing, we now develop an open server: a program that is
executed by a process to open one or more files. But instead of sending the contents of
the file back to the calling process, the server sends back an open file descriptor. This
lets the server work with any type of file (such as a device or a socket) and not simply
regular files. It also means that a minimum of information is exchanged using IPC: the
filename and open mode from the client to the server, and the returned descriptor from
the server to the client. The contents of the file are not exchanged using IPC.

There are several advantages in designing the server to be a separate executable
program (either one that is executed by the client, as we develop in this section, or a
daemon server, which we develop in the next section).

e The server can easily be contacted by any client, similar to the client calling a
library function. We are not hard coding a particular service into the
application, but designing a general facility that others can reuse.

e If we need to change the server, only a single program is affected. Conversely,
updating a library function can require that all programs that call the function be
updated (i.e., relinked with the link editor). Shared libraries can simplify this
updating (Section 7.7).

e The server can be a set-user-ID program, providing it with additional
permissions that the client does not have. Note that a library function (or shared
library function) can’t provide this capability.

The client process creates an s-pipe (either a STREAMS-based pipe or a UNIX
domain socket pair) and then calls fork and exec to invoke the server. The client
sends requests across the s-pipe, and the server sends back responses across the s-pipe.

We define the following application protocol between the client and the server.

1. The client sends a request of the form “open <pathname> <openmode>\0"
across the s-pipe to the server. The <openmode> is the numeric value, in ASCII
decimal, of the second argument to the open function. This request string is
terminated by a null byte.

2. The server sends back an open descriptor or an error by calling either send_fd
or send_err.

This is an example of a process sending an open descriptor to its parent. In Section 17.6,
we’ll modify this example to use a single daemon server, where the server sends a
descriptor to a completely unrelated process. :

We first have the header, open.h (Figure 17.26), which includes the standard
headers and defines the function prototypes.

#include "apue.h"
#include <errno.h>

#define CL_OPEN "open" /* client’s request for server */

int csopen(char *, int);

Figure 17.26 The open.h header
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The main function (Figure 17.27) is a loop that reads a pathname from standard
input and copies the file to standard output. The function calls csopen to contact the
open server and return an open descriptor.

#include "open.h"
#include <fcntl.h>
#define BUFFSIZE 8192
int

main(int argc, char *argv{])

{
int n, fd;
char buf [BUFFSIZE], line[MAXLINE];

/* read filename to cat from stdin */

while (fgets(line, MAXLINE, stdin) != NULL) {
if (line[strlen(line) - 1] == ‘\n’)
line(strlen(line) - 1] = 0; /* replace newline with null */

/* open the file */
if ((fd = csopen(line, O _RDONLY)) < 0)
continue; /* csopen() prints error from server */

/* and cat to stdout */
while ((n = read(fd, buf, BUFFSIZE)) > 0)

if (write (STDOUT_FILENO, buf, n) != n)
err sys("write error");
if (n < 0)
err sys("read error");
close (fd) ;

}

exit (0);

Figure 17.27 The client main function, version 1

The function csopen (Figure 17.28) does the fork and exec of the server, after
creating the s-pipe.

#include "open.h"
#include <sys/uio.h> /* struct iovec */
/*

* Open the file by sending the "name" and "oflag" to the
* connection server and reading a file descriptor back.
*/
int
csopen(char *name, int oflag)
{
pid t pid;
int len;
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char buf [10] ;

struct iovec iov(3];

static int fa(2] = { -1, -1 };

if (f£d[o] < 0) { /* fork/exec our open server first time */

if (s_pipe(fd) < 0)
err_sys("s_pipe error");

if ((pid = fork()) < 0) {
err sys("fork error") ;

} else if (pid == 0) { /* child */
close (£d4[0]);
if (£4[1] != STDIN_FILENO &&
dup2 (£4[17, STDIN_ FILENO)} != STDIN_FILENO)
err_sys("dup2 error to stdin");
if (£4[1] != STDOUT_FILENO &&
dup2 (£d4[1], STDOUT_FILENO) I= STDOUT_FILENO)
err_ sys("dup2 error to stdout") ;
if (execl("./opend", "opend", (char *)0) < 0)

err_ sys("execl error");

close(£4[1]); /* parent */
sprintf (buf, " %d", oflag); /* oflag to ascii */
iov[0] .iov_base = CL_OPEN " "; /* string concatenation */
iov[0].iov_len = strlen(CL_OPEN) + 1;
iov[1l] .iov_base = name;
iov[1l] .iov_len = strlen(name);
iov[2] .iov_base = buf;
jov[2] .iov_len = strlen(buf) + 1; /* +1 for null at end of buf */
len = iov[0].iov_len + iov([l].iov_len + iov([2].iov_len;
if (writev(fd[0], &iov[0], 3) != len)

err sys("writev error") ;

/* read descriptor, returned errors handled by write() */
return(recv_fd(£d[0], write));

Figure 17.28 The csopen function, version 1

The child closes one end of the pipe, and the parent closes the other. For the server
that it executes, the child also duplicates its end of the pipe onto its standard input and
standard output. (Another option would have been to pass the ASCII representation of
the descriptor £d (1] as an argument to the server.)

The parent sends to the server the request containing the pathname and open mode.
Finally, the parent calls recv_£d to return either the descriptor or an error. If an error is
returned by the server, write is called to output the message to standard error.

Now let’s look at the open server. It is the program opend that is executed by the
client in Figure 17.28. First, we have the opend.h header (Figure 17.29), which includes
the standard headers and declares the global variables and function prototypes.
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#include "apue.h"
#include <errno.h>

#define CL_OPEN "open" /* client’s request for server */
extern char errmsg[]; /* error message string to return to client */
extern int oflag; /* open{() flag: O_xxx ... */

extern char *pathname; /* of file to open() for client */

int cli args(int, char **);
void request (char *, int, int);

Figure 17.29 The opend.h header, version 1

The main function (Figure 17.30) reads the requests from the client on the s-pipe (its
standard input) and calls the function request.

#include "opend.h"
char errmsg [MAXLINE] ;
int oflag;

char *pathname;

int

main (void)
{
int nread;
char buf [MAXLINE] ;

for ( ; ; ) | /* read arg buffer from client, process request */
if ((nread = read(STDIN_FILENO, buf, MAXLINE)) < 0)
err sys("read error on stream pipe");
else if (nread == 0)
break; /* client has closed the stream pipe */
request (buf, nread, STDOUT_FILENO) ;

}

‘exit (0) ;

Figure 17.30 The server main function, version 1

The function request in Figure 17.31 does all the work. It calls the function
buf_args to break up the client’s request into a standard argv-style argument list and
calls the function cli_args to process the client’s arguments. If all is OK, open is
called to open the file, and then send_£d sends the descriptor back to the client across
the s-pipe (its standard output). If an error is encountered, send_err is called to send
back an error message, using the client-server protocol that we described earlier.

#include "opend.h"
#include <fentl.hs
void

request (char *buf, int nread, int £d4)

{
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int newfd;

if (buf[nread-1] != 0) {
sprintf (errmsg, "request not null terminated: %*.*s\n",
nread, nread, buf);
send err(fd, -1, errmsg);
return;

if (buf args(buf, cli_args) < 0) { /* parse args & set options */
send_err(fd, -1, errmsg) ;
return;

if ((newfd = open(pathname, oflag)) < 0) {
sprintf (errmsg, "can’'t open %s: $s\n", pathname,
strerror (errno)) ;
send_err(fd, -1, errmsg) ;

return;

if (send fd(fd, newfd) < 0) /* send the descriptor */
err_sys("send_fd erroxr") ;

close (newfd) ; /* we're done with descriptor */

Figure 17.31 " The request function, version 1

The client’s request is a null-terminated string of white-space-separated arguments.
The function buf_args in Figure 17.32 breaks this string into a standard argv-style
argument list and calls a user function to process the arguments. We'll use the
buf_args function later in this chapter. We use the ISO C function strtok to tokenize
the string into separate arguments.

#include "apue.h"

#define MAXARGC 50 /* max number of arguments in buf */
#define WHITE " \t\n" /* white space for tokenizing arguments */
/*

* buf [] contains white-space-separated arguments. We convert it to an
* argv-style array of pointers, and call the user’s function (optfunc)

* to process the array. We return -1 if there’s a problem parsing buf,
* else we return whatever optfunc() returns. Note that user’s buf[]

* array is modified (nulls placed after each token) .

int
buf_args(char *buf, int (*optfunc) (int, char **))

{

char *ptr, *argv[MAXARGC];
int argc;
if (strtok(buf, WHITE) == NULL) /* an arg&[o]'is reﬁuired */

return(-1);
argvlargc = 0] = buf;



620  Advanced IPC Chapter 17
while ((ptr = strtok(NULL, WHITE)) != NULL) {
if (++argc >= MAXARGC-1) /* -1 for room for NULL at end */
return(-1); :
argv[argc] = ptr;
}
argv[++argc] = NULL;
/ *
* Since argv[] pointers point into the user’s buf([],
* user’s function can just copy the pointers, even
* though argv([] array will disappear on return.
*/
return( (*optfunc) (arge, argv));
}
Figure 17.32 The buf_args function
The server’s function that is called by buf_args is cli_args (Figure 17.33). It
verifies that the client sent the right number of arguments and stores the pathname and
open mode in global variables.
#include "opend.h"
/ *
* This function is called by buf_args(), which is called by
* request (). buf_args() has broken up the client’s buffer
* into an argv([]-style array, which we now process.
*/
int
cli_args(int argc, char **argv)
{
if (argc != 3 || stremp(argv([0], CL _OPEN) != 0) ({
strcpy (errmsg, "usage: <pathname> <oflag>\n");
return(-1);
}
pathname = argv(1]; /* save ptr to pathname to open */
oflag = atoi(argv[2]);
return(0) ;
}
Figure 17.33 The cli_args function
This completes the open server that is invoked by a fork and exec from the client.
A single s-pipe is created before the fork and is used to communicate between the
client and the server. With this arrangement, we have one server per client.
17.6 An Open Server, Version 2

In the previous section, we developed an open server that was invoked by a fork and
exec by the client, demonstrating how we can pass file descriptors from a child to a
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parent. In this section, we develop an open server as a daemon process. One server
handles all clients. We expect this design to be more efficient, since a fork and exec
are avoided. We still use an s-pipe between the client and the server and demonstrate
passing file descriptors between unrelated processes. We'll use the three functions
serv_listen, serv_accept, and cli_conn introduced in Section 17.2.2. This
server also demonstrates how a single server can handle multiple clients, using both the
select and poll functions from Section 14.5.

The client is similar to the client from Section 17.5. Indeed, the file main.c is
identical (Figure 17.27). We add the following line to the open.h header (Figure 17.26):

#define CS_OPEN "/home/sar/opend" /* server’s well-known name */

The file open . ¢ does change from Figure 17.28, since we now call c1i_conn instead of
doing the fork and exec. This is shown in Figure 17.34.

#include "open.h"
#include <sys/uio.h> /* struct iovec */
/* v

* Open the file by sending the "name" and "oflag" to the
* connection server and reading a file descriptor back.
*/

int

csopen (char *name, int oflag)

{

int len;

char . buf[10];

struct iovec iov([3];

static int csfd = -1;

if (csfd < 0) { /* open connection to conn server */

if ((csfd = cli_conn(CS_OPEN)) < 0)
err sys("cli_conn erxror");

}

sprintf (buf, " %d", oflag); /* oflag to ascii */
iov[0] .iov_base = CL OPEN " "; /* string concatenation */
iov[0].iov_len = strlen(CL_OPEN) + 1;

iov[1l] .iov_base = name;

jov(i].iov_len = strlen(name);

iov[2]}.iov_base = buf;

iov([2] .iov_len = strlen(buf) + 1; /* null always sent */
len = iov(0].iov_len + iov(1l].iov_len + iov[2].iov_len;

if (writev(csfd, &iov[0], 3) != len)

err sys("writev error");

/* read back descriptor; returned errors handled by write() */
return(recv_fd(csfd, write));

Figure 17.34 The csopen function, version 2
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The protocol from the client to the server remains the same.
Next, we’ll look at the server. The header opend.h (Figure 17.35) includes the
standard headers and declares the global variables and the function prototypes.

#include "apue.h"
#include <errno.h>

#define CS_OPEN "/home/sar/opend" /* well-known name */
#define CL_OPEN "open* /* client’s request for server */
extern int debug; /* nonzero if interactive (not daemon) */
extern char errmsg[]; /* error message string to return to client */
extern int oflag; /* open flag: O_xxx ... */
extern char *pathname; /* of file to open for client */
typedef struct { /* one Client struct per connected client */
int - fd; /* fd, or -1 if available */
uid_t uid;
} Client;
extern Client *client; /* ptr to malloc’ed array */
extern int client_size; /* # entries in client([] array */
int cli_args(int, char **);
int client_add(int, uid t);
void client_del (int) ;
void loop (veid) ;
void request (char *, int, int, uid_t);

Figure 17.35 The opend. h header, version 2

Since this server handles all clients, it must maintain the state of each client
connection. This is done with ‘the client array declared in the opend.h header.
Figure 17.36 defines three functions that manipulate this array.

#include "opend.h"
#define NALLOC 10 /* # client structs to alloc/realloc for */
static void
client_alloc(void) /* alloc more entries in the client[] array */
{
int i;
if (client == NULL)
client = malloc(NALLOC * sizeof (Client));
else
client = realloc(client, (client_size+NALLOC)*sizeof (Client));
if (client == NULL)

err_sys("can’t alloc for client array");

/* initialize the new entries */
for (i = client_size; i < client_size + NALLOC; i++)
client[i] .fd = -1; /* fd of -1 means entry available */

client size += NALLOC;
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}
/*

* Called by loop() when connection request from a new client arrives.
*/

int

client add(int £d, uid_t uid)

{

int i;
if (client == NULL) /* first time we’re called */
client_alloc();
again:
for (i = 0; i < client_size; i++) {

if (client[i] .fd == -1) { /* find an available entry */
client(i].fd = fd;
client [i] .uid = uid;
return(i); /* return index in client(] array */

}

/* client array full, time to realloc for more */
client_alloc();

goto again; /* and search again (will work this time) */
}
/*
* Called by loop{) when we’re done with a client.
*/
void
client_del(int £d)
{
int i;
for (i = 0; i < client_size; i++) {
if (client([i].fd == £d) {
client[i) .fd = -1;
return;
}
}
log quit("can’t find client entry for fd sd", fd);
}

Figure 17.36 Functions to manipulate client array

The first time client addis called, it calls client_alloc, which calls malloc to
allocate space for ten entries in the array. After these ten entries are all in use, a later
call to client_add causes realloc to allocate additional space. By dynamically
allocating space this way, we have not limited the size of the client array at compile
time to some value that we guessed and put into a header. These functions call the
log_ functions (Appendix B) if an error occurs, since we assume that the server is a
daemon.
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The main function (Figure 17.37) defines the global variables, processes the
command-line options, and calls the function 1oop. If we invoke the server with the -d
option, the server runs interactively instead of as a daemon. This is used when testing
the server.

#include "opend.h"
#include <syslog.h>

int debug, oflag, client_size, log_to_stderr;
char errmsg [MAXLINE] ;

char *pathname;

Client *client = NULL;

int
main(int argc, char *argv(])

{

int c;

log_open("open.serv", LOG_PID, LOG_USER) ;

opterr = 0; /* don’t want getopt () writing to stderr */
while ((c = getopt(argc, argv, "d")) != EOF) {
switch (c¢) {
case 'd’: /* debug */
debug = log_to_stderr = 1;
break;
case '?’:
err _quit ("unrecognized option: -%c", optopt);
}
}
if (debug == 0)

daemonize ("opend") ;

loop(); /* never returns */

Figure 17.37 The server main function, version 2

The function loop is the server’s infinite loop. We’ll show two versions of this
function. Figure 17.38 shows one version that uses select; Figure 17.39 shows another
version that uses poll.

#include "opend.h"
#include <sys/time.h>
#include <sys/select.h>
void
loop (void)
{
int i, n, maxfd, maxi, listenfd, clifd, nread;

char buf [MAXLINE] ;
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uid_t
fd_set

FD_ZERO (

/* obtai
if ((lis

log__

FD_SET (1
maxfd =
maxi = -

for ( ;
rset
if (

if (

for

uid;
rset, allset;

&allset) ;

n fd to listen for client requests on */
tenfd = serv_listen(CS_OPEN)) < 0)

sys ("serv_listen error");

istenfd, &allset);

listenfd;

1;

;) |

= allset; /* rset gets modified each time around */
(n = select (maxfd + 1, &rset, NULL, NULL, NULL))
log_sys("select error");
FD_ISSET(listenfd, &rset)) {
/* accept new client request */
if ((clifd = serv_accept (listenfd, &uid)) < 0)
log_sys("serv_accept error: %d", clifd);
i = client_add(clifd, uid);
FD_SET(clifd, &allset);
if (clifd > max£fd)
maxfd = clifd; /* max fd for select() */
if (i > maxi)
maxi = i; /* max index in client[] array */

log_msg("new connection: uid %d, fd %d", uid, clifd);

continue;

< 0)

(i = 0; 1 <= maxi; i++) { /* go through client(] array */

if ((clifd = client[i]l.fd) < 0)
continue;
if (FD_ISSET(clifd, &rset)) {
/* read argument buffer from client */

if ((nread = read(clifd, buf, MAXLINE)) < 0)

log _sys("read error on fd %d", clifd);
} else if (nread == 0) {
log_msg("closed: uid %d, fd %d",
client[i).uid, clifd);

client del(clifd); /* client has closed cxn */

FD_CLR(clifd, &allset);
close (clifd) ;
} else { /* process client’s request */

{

request (buf, nread, clifd, client[i].uid);

}

Figure 17.38 The loop function using select
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This function calls serv_listen to create the server’s endpoint for the client
connections. The remainder of the function is a loop that starts with a call to select.

Two conditions can be true after select returns.

1. The descriptor listenfd can be ready for reading, which means that a new
client has called cli conn. To handle this, we call serv_accept and then
update the client array and associated bookkeeping information for the new
client. (We keep track of the highest descriptor number for the first argument to
select. We also keep track of the highest index in use in the client array.)

2. An existing client’s connection can be ready for reading. This means that the
client has either terminated or sent a new request. We find out about a client
termination by read returning 0 (end of file). If read returns a value greater
than 0, there is a new request to process, which we handle by calling request.

We keep track of which descriptors are currently in use in the allset descriptor
set. As new clients connect to the server, the appropriate bit is turned on in this

descriptor set. The appropriate bit is turned off when the client terminates.

We always know when a client terminates, whether the termination is voluntary or
not, since all the client’s descriptors (including the connection to the server) are
automatically closed by the kernel. This differs from the XSI IPC mechanisms.

The loop function that uses poll is shown in Figure 17.39.

#include "opend.h"
#include <poll.h>
#if !defined (BSD) && !defined (MACOS)

#include <stropts.h>

#endif

void

loop (void)

{
int i, maxi, listenfd, clifd, nread;
char buf [MAXLINE] ;
uid_t uid;

struct pollfd *pollfd;

if ((pollfd = malloc(open max() * sizeof (struct pollfd))) == NULL)

err_sys{("malloc error");

/* obtain fd to listen for client requests on */
if ((listenfd = serv_listen(CS_OPEN)) < 0)
log_sys("serv_listen error");

client_add(listenfd, 0); /* we use [0] for listenfd */

pollfd[0] .£fd = listenfd;
pollfd (0] .events = POLLIN;
maxi = 0;

for ( ; ;) |
if (poll(pollfd, maxi + 1, -1) < 0)
log_sys ("poll error");

if (pollfd([0}.revents & POLLIN) {
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/* accept new client request */

if ((clifd = serv_accept (listenfd, &uid)) < 0)
log_sys("serv_accept error: %d", clifd);

i = client_add(clifd, uid);

pollfd(il.fd = clifd;

pollfd[i] .events = POLLIN;

if (1 > maxi)
maxi = i;

log msg("new connection: uid %d, fd %d", uid, clifd);

for (i = 1; i <= maxi; i++) {
if ((clifd = client([i].fd) < 0)
continue; :
if (pollfd[i].revents & POLLHUP) {
goto hungup;
} else if (pollfd[il.revents & POLLIN) {
/* read argument buffer from client */
if ((nread = read(clifd, buf, MAXLINE)) < 0) {
log_sys("read error on fd %d4", clifd);
} else if (nread == 0) {
hungup:
log _msg("closed: uid %4, fd %d",
client [i] .uid, clifd);
client del(clifd); /* client has closed conn */
pollfd[i] .fd = -1;
close(clifd);
} else { /* process client’s request */
request (buf, nread, clifd, client [i] .uid);
}

Figure 17.39 The loop function using poll

To allow for as many clients as there are possible open descriptors, we dynamically
allocate space for the array of pol1£d structures. (Recall the open_max function from
Figure 2.16.)

We use the first entry (index 0) of the client array for the listenfd descriptor.
That way, a client’s index in the client array is the same index that we use in the
pollfd array. The arrival of a new client connection is indicated by a POLLIN on the
listenfd descriptor. As before, we call serv_accept to accept the connection.

For an existing client, we have to handle two different events from poll: a client
termination is indicated by POLLHUP, and a new request from an existing client is
indicated by POLLIN. Recall from Exercise 15.7 that the hang-up message can arrive at
the stream head while there is still data to be read from the stream. With a pipe, we
want to read all the data before processing the hangup. But with this server, when we
receive the hangup from the client, we can close the connection (the stream) to the
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client, effectively throwing away any data still on the stream. There is no reason to
process any requests still on the stream, since we can’t send any responses back.

As with the select version of this function, new requests from a client are handled
by calling the request function (Figure 17.40). This function is similar to the earlier
version (Figure 17.31). It calls the same function, buf _args (Figure 17.32), that calls
cli_args (Figure 17.33), but since it runs from a daemon process, it logs error
messages instead of printing them on the standard error stream.

#include "opend.h"
#include <fentl.hs>
void

request (char *buf, int nread, int clifd, uid_t uid)

int newfd;

if (buf{nread-1] != 0) {
sprintf (errmsg,
"request from uid %d not null terminated: %*.*s\n",
uid, nread, nread, buf);
send_err(clifd, -1, errmsg);
return;

}

log_msg("request: %s, from uid %d", buf, uid);

/* parse the arguments, set options */
if (buf_args(buf, cli_args) < 0) {
send_err(clifd, -1, errmsg);
log_msg(errmsg) ;
return;

}

if ((newfd = open(pathname, oflag)) < 0) {
sprintf (errmsg, "can’t open %s: %s\n",
pathname, strerror(errno));
send_err(clifd, -1, errmsg);
log_msg(errmsg) ;
return;

}

/* send the descriptor */
if (send_fd(clifd, newfd) < 0)
log_sys("send_fd error");
log_msg("sent fd %d over fd %d for %s", newfd, clifd, pathname);
close (newfd) ; /* we’re done with descriptor */

Figure 17.40 The request function, version 2

This completes the second version of the open server, using a single daemon to handle
all the client requests.
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17.7 Summary

The key points in this chapter are the ability to pass file descriptors between processes
and the ability of a server to accept unique connections from clients. We've seen how to
do this using both STREAMS pipes and UNIX domain sockets. Although all platforms
provide support for UNIX domain sockets (refer back to Figure 15.1), we've seen that
there are differences in each implementation, which makes it more difficult for us to
develop portable applications.

We presented two versions of an open server. One version was invoked directly by
the client, using fork and exec. The second was a daemon server that handled all
client requests. Both versions used the file descriptor passing and receiving functions.
The final version also used the client-server connection functions introduced in
Section 17.2.2 and the I/0 multiplexing functions from Section 14.5.

Exercises

17.1 Recode Figure 17.4 to use the standard 1/O library instead of read and write on the
STREAMS pipe.

17.2 Write the following program using the file descriptor passing functions from this chapter
and the parent—child synchronization routines from Section 8.9. The program calls fork,
and the child opens an existing file and passes the open descriptor to the parent. The child
then positions the file using 1seek and notifies the parent. The parent reads the file’s
current offset and prints it for verification. If the file was passed from the child to the parent
as we described, they should be sharing the same file table entry, so each time the child
changes the file’s current offset, that change should also affect the parent’s descriptor. Have
the child position the file to a different offset and notify the parent again.

173 In Figures 17.29 and 17.30, we differentiated between declaring and defining the global
variables. What is the difference?

17.4 Recode the buf_args function (Figure 17.32), removing the compile-time limit on the size
of the argv array. Use dynamic memory allocation.

17.5 Describe ways to optimize the function loop in Figure 17.38 and Figure 17.39. Implement
your optimizations.
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Terminal 1/0

Introduction

The handling of terminal 1/O is a messy area, regardless of the operating system. The
UNIX System is no exception. The manual page for terminal I/O is usually one of the
longest in most editions of the programmer’s manuals.

With the UNIX System, a schism formed in the late -1970s when System III
developed a different set of terminal routines from those of Version 7. The System I
style of terminal 1/O continued through System V, and the Version 7 style became the
standard for the BSD-derived systems. As with signals, this difference between the two
worlds has been conquered by POSIX.1. In this chapter, we look at all the POSIX.1
terminal functions and some of the platform-specific additions.

Part of the complexity of the terminal 1/O system occurs because people use
terminal 1/O for so many different things: terminals, hardwired lines between
computers, modems, printers, and so on.

Overview

Terminal I/0 has two modes:

1. Canonical mode input processing. In this mode, terminal input is processed as
lines. The terminal driver returns at most one line per read request.

2. Noncanonical mode input processing. The input characters are not assembled
into lines.

631
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If we don’t do anything special, canonical mode is the default. For example, if the shell
redirects standard input to the terminal and we use read and write to copy standard
input to standard output, the terminal is in canonical mode, and each read returns at
most one line. Programs that manipulate the entire screen, such as the vi editor, use
noncanonical mode, since the commands may be single characters and are not
terminated by newlines. Also, this editor doesn't want processing by the system of the
special characters, since they may overlap with the editor commands. For example, the
Control-D character is often the end-of-file character for the terminal, but it’s also a vi
command to scroll down one-half screen.

The Version 7 and older BSD-style terminal drivers supported three modes for terminal input:
(a} cooked mode (the input is collected into lines, and the special characters are processed), (b)
raw mode (the input is not assembled into lines, and there is no processing of special
characters), and (c) cbreak mode (the input is not assembled into lines, but some of the special
characters are processed). Figure 18.20 shows a POSIX.1 function that places a terminal in
cbreak or raw mode.

POSIX.1 defines 11 special input characters, 9 of which we can change. We’ve been
using some of these throughout the text: the end-of-file character (usually Control-D)
and the suspend character (usually Control-Z), for example. Section 18.3 describes each
of these characters.

We can think of a terminal device as being controlled by a terminal driver, usually
within the kernel. Each terminal device has an input queue and an output queue,
shown in Figure 18.1.

next character next character
written by process read by process

if echo enabled . T K

output queue - input queue |

___

<F‘ MAX_INPUT ——

next character to next character

transmit to device read from device

Figure 18.1 Logical picture of input and output queues for a terminal device

There are several points to consider from this picture.

* If echoing is enabled, there is an implied link between the input queue and the
output queue.

* The size of the input queue, MAX_INPUT (see Figure 2.11), is finite. When the
input queue for a particular device fills, the system behavior is implementation
dependent. Most UNIX systems echo the bell character when this happens.
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o There is another input limit, MAX CANON, that we don’t show here. This limit is

the maximum number of bytes in a canonical input line.

Although the size of the output queue is finite, no constants defining that size
are accessible to the program, because when the output queue starts to fill up,
the kernel simply puts the writing process to sleep until room is available.

We'll see how the tcflush flush function allows us to flush either the input
queue or the output queue. Similarly, when we describe the tcsetattr
function, we'll see how we can tell the system to change the attributes of a
terminal device only after the output queue is empty. (We want to do this, for
example, if we're changing the output attributes.) We can also tell the system to
discard everything in the input queue when changing the terminal attributes.
(We want to do this if we're changing the input attributes or changing between
canonical and noncanonical modes, so that previously entered characters aren’t
interpreted in the wrong mode.)

Most UNIX systems implement all the canonical processing in a module called the

terminal line discipline. We can think of this module as a box that sits between the
kernel’s generic read and write functions and the actual device driver (see Figure 18.2).

user process

read and write
functions

A

terminal
line discipline

\

\

terminal
device driver

|
i
I
1
|
|
i
|
|
|
i
1kernel
|
]
|
]
i
{
|
i
|
{
|

actual device

Figure 18.2 Terminal line discipline

Note the similarity of this picture and the diagram of a stream shown in Figure 14.14.
We'll return to this picture in Chapter 19, when we discuss pseudo terminals.
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All the terminal device characteristics that we can examine and change are
contained in a termios structure. This structure is defined in the header
<termios.h>, which we use throughout this chapter:

struct termios {

tcflag t c_iflag; /* input flags */
tcflag_t c_oflag; /* output flags */
tcflag t c_cflag; /* control flags */
tcflag_t c_lflag; /* local flags */

cc_t c_cc[NCCS]; /* control characters */

bi

Roughly speaking, the input flags control the input of characters by the terminal device
driver (strip eighth bit on input, enable input parity checking, etc.), the output flags
control the driver output (perform output processing, map newline to CR/LF, etc.), the
control flags affect the RS-232 serial lines (ignore modem status lines, one or two stop
bits per character, etc.), and the local flags affect the interface between the driver and the
user (echo on or off, visually erase characters, enable terminal-generated signals, job
control stop signal for background output, etc.).

The type tcflag t is big enough to hold each of the flag values and is often
defined as an unsigned int or an unsigned long. The ¢_cc array contains all the
special characters that we can change. NCCS is the number of elements in this array and
is typically between 15 and 20 (since most implementations of the UNIX System
support more than the 11 POSIX-defined special characters). The cc_t type is large
enough to hold each special character and is typically an unsigned char.

Versions of System V that predated the POSIX standard had a header named <termio.h> and
a structure named termio. POSIX.1 added an s to the names, to differentiate them from their
predecessors.

Figures 18.3 through 18.6 list all the terminal flags that we can change to affect the
characteristics of a terminal device. Note that even though the Single UNIX
Specification defines a common subset that all platforms start from, all the
implementations have their own additions. Most of these additions come from the
historical differences between the systems. We’ll discuss each of these flag values in
detail in Section 18.5.

Given all the options available, how do we examine and change these
characteristics of a terminal device? Figure 18.7 summarizes the various functions
defined by the Single UNIX Specification that operate on terminal devices. (All the
functions listed are part of the base POSIX specification, except for tcgetsid, which is
an X8I extension. We described tcgetpgrp, tcgetsid, and tcsetpgrp in
Section 9.7.)

Note that the Single UNIX Specification doesn’t use the classic ioct1 on terminal
devices. Instead, it uses the 13 functions shown in Figure 18.7. The reason is that the
ioctl function for terminal devices uses a different data type for its final argument,
which depends on the action being performed. This makes type checking of the
arguments impossible.
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Although only 13 functions operate on terminal devices, the first two functions in
Figure 18.7 (tcgetattr and tcsetattr) manipulate almost 70 different flags (see
Figures 18.3 through 18.6). The handling of terminal devices is complicated by the large
number of options available for terminal devices and trying to determine which options

are required for a particular device (be it a terminal, modem, printer, or ‘whatever).

L FreeBSD Linux Mac OS X Solaris
r Flag Description POSIX1 | 551 2422 103 9
CBAUDEXT extended baud rate .
CCAR_OFLOW | DCD flow control of output . .
cets_OFLOW | CTS flow control of output . . D
CDSR_OFLOW | DSR flow control of output . .
cpTR_IFLOW | DTR flow control of input . .
CIBAUDEXT extended input baud rate .
CIGNORE ignore control flags . .
CLOCAL ignore modem status lines . . . . .
CREAD enable receiver . . D . .
CRTSCTS enable hardware flow control . . . D
CRTS_IFLOW | RTS flow control of input . . .
CRTSXOFF enable input hardware flow control .
CSIZE character size mask . . o . .
CSTOPB send two stop bits, else one . . o . .
HUPCL hang up on last close . . . . .
MDMBUF same as CCAR_OFLOW . .
PARENB parity enable . . . . .
PAREXT mark or space parity .
PARODD odd parity, else even . . . . .
Figure 18.3 c_cflag terminal flags
Flag Description POSIX.1 Fr;ezB 1SD [2‘12;; Ma; O%S X 501;“15
BRKINT generate SIGINT on BREAK o . o . .
ICRNL map CR to NL on input . . . D .
IGNBRK ignore BREAK condition . . . . .
IGNCR ignore CR . . o . .
IGNPAR ignore characters with parity errors . . . . .
IMAXBEL | ring bell on input queue full . . . .
INLCR map NL to CR on input . . . o .
INPCK enable input parity checking . o o . .
ISTRIP strip eighth bit off input characters . . o . .
IUCLC map uppercase to lowercase on input o .
IXANY enable any characters to restart output X8I . . . .
IXOFF enable start/stop input flow control o o o . .
IXON enable start/stop output flow control . . . .
PARMRK | mark parity errors . . . o

Figure 18.4 c_iflag terminal flags
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. FreeBSD Linux Mac OS X Solaris
Flag Description POSIX.1 521 2422 103 9
ALTWERASE use alternate WERASE algorithm . .
ECHO enable echo . . . . .
ECHOCTL echo control chars as “(Char) . . . .
ECHOE visually erase chars . . . .
ECHOK echo kill . o . .
ECHOKE visual erase for kill . . . .
ECHONL echo NL . . o . J
ECHOPRT visual erase mode for hard copy . . . .
EXTPROC external character processing . .
FLUSHO output being flushed . . . .
ICANON canonical input . . . . .
IEXTEN enable extended input char . i . o .
processing
ISIG enable terminal-generated signals . . . . o
NOFLSH disable flush after interrupt or . . . . .
quit
NOKERNINFO | no kernel output from STATUS . .
PENDIN retype pending input . . . .
TOSTOP send SIGTTOU for background . . . o .
output
XCASE canonical upper/lower . o
presentation

Figure 18.5 c_1flag terminal flags

- FreeBSD Linux Mac OS X Solaris

Flag Description POSIXT | 521 2422 103 9
BSDLY | backspace delay mask XSt . .
CMSPAR | mark or space parity .
CRDLY CR delay mask X8I . o
FFDLY form feed delay mask XSI . .
NLDLY NL delay mask XSl . .
OCRNL map CR to NL on output XSI . . .
OFDEL fill is DEL, else NUL XsI . .
OFILL use fill character for delay XSI . o
oLcuc map lowercase to uppercase on . .

output

ONLCR | map NL to CR-NL XSI . . .
ONLRET | NL performs CR function XsI o . .
ONOCR | no CR output at column 0 XS1 . . .
ONOEOT | discard EOTs ("D) on output . .
OPOST perform output processing . 4 4 . .
OXTABS | expand tabs to spaces . °
TABDLY | horizontal tab delay mask XSI . .
VTDLY vertical tab delay mask XSI . .

Figure 18.6 c_oflag terminal flags
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Function Description

tcgetattr fetch attributes (t ermios structure)

tcsetattr set attributes (termios structure)

cfgetispeed | getinputspeed

cfgetospeed | get output speed

cfsetispeed | setinput speed

cfsetospeed | setoutputspeed

tcdrain wait for all output to be transmitted

tcflow suspend transmit or receive

tcflush flush pending input and/or output

tcsendbreak | send BREAK character

tcgetpgrp get foreground process group ID

tcsetpgrp set foreground process group ID

tcgetsid get process group ID of session leader for controlling

TTY (XSI extension)

Figure 18.7 Summary of terminal I/O functions

The relationships among the 13 functions shown in Figure 18.7 are shown in

Figure 18.8.
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terminal line discipline / terminal device driver

Figure 18.8 Relationships among the terminai-related functions

POSIX.1 doesn’t specify where in the termios structure the baud rate information is stored;
that is an implementation detail. Some systems, such as Linux and Solaris, store this
information in the c_cflag field. BSD-derived systems, such as FreeBSD and Mac OS X, have
two separate fields in the structure: one for the input speed and one for the output speed.
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18.3 Special Input Characters

POSIX.1 defines 11 characters that are handled specially on input. Implementations
define additional special characters. Figure 18.9 summarizes these special characters.

o c_cc Enabled b Typical FreeBSD Linux Mac OS X Solaris
Character Description subscript | field }t:lag \)'Ial;;ue POSIXTI o1 2420 103 9
CR carriage return (can't change)|c_1flag ICANON \r . . . . .
DISCARD | discard output VDISCARD c_lflag IEXTEN e . . . .
DSUSP  |delayed suspend VDSUSP c_lflag 1ISIG Y . . .
(SIGTSTP)
EOF end of file VEOF c_lflag ICANON ‘D . . . . .
EOL end of line VEOL c_lflag ICANON . . o . .
EOL2 alternate end of line |VEOL2 c_lflag ICANON . . . .
ERASE  |backspace one VERASE c_lflag ICANON "H, ™ . . o . .
character
ERASE2 |alternate backspace |VERASE2 c_lflag ICANON "H,7? .
character
INTR interrupt signal VINTR c_lflag 1ISIG ~?,°C . . . . .
(SIGINT)
KILL erase line VKILL c_lflag ICANON ‘U . . . . .
LNEXT |literal next VLNEXT c_lflag IEXTEN Vv . . . .
NL line feed (newline) (can’t change)|c_1flag ICANON \n . . . . .
QUIT quit signal (SIGQUIT) VQUIT c_lflag ISIG “\ . . . . .
REPRINT |reprint all input VREPRINT {c_1flag ICANON R . o . .
START  |resume output VSTART c_iflag IXON/IXOFF| "Q . . . . o
STATUS |status request VSTATUS c_lflag ICANON T . .
STOP stop output VSTOP c_iflag IXON/IXOFF| °S . . . . .
SUSp suspend signal VSUSP c_lflag ISIG A . . . . .
(SIGTSTP)
WERASE |backspace one word |VWERASE c_lflag ICANON W . . . .

Figure 18.9 Summary of special terminal input characters

Of the 11 POSIX.1 special characters, we can change 9 of them to almost any value
that we like. The exceptions are the newline and carriage return characters (\n and \r,
respectively) and perhaps the STOP and START characters (depends on the
implementation). To do this, we modify the appropriate entry in the c¢_cc array of the
termios structure. The elements in this array are referred to by name, with each name
beginning with a V (the third column in Figure 18.9).

POSIX.1 allows us to disable these characters. If we set the value of an entry in the
c_cc array to the value of _POSIX VDISABLE, then we disable the corresponding
special character.

In older versions of the Single UNIX Specification, support for _POSIX_VDISABLE was optional.
It is now required.

All four platforms discussed in this text support this feature. Linux 2.4.22 and Solaris 9 define
_POSIX_VDISABLE as 0; FreeBSD 5.2.1 and Mac OS X 10.3 define it as 0xf£.

Some earlier UNIX systems disabled a feature if the corresponding special input character was 0.
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Example

Before describing all the special characters in detail, let’s look at a small program that
changes them. The program in Figure 18.10 disables the interrupt character and sets the
end-of-file character to Control-B.

#include "apue.h"
#include <termios.h>

int
main (void)

{

struct termios term;
long vdisable;

if (isatty(STDIN_FILENO) == 0)
err quit("standard input is not a terminal device");

if ((vdisable = fpathconf (STDIN_FILENO, _PC_VDISABLE)) < 0)
err_quit ("fpathconf error or _POSIX_VDISABLE not in effect");

if (tcgetattr (STDIN FILENO, &term) < 0) /* fetch tty state */
err_sys("tcgetattr exrror");

tefm‘c_cc[VINTR]
term.c_cc [VEOF]

]

vdisable; /* disable INTR character */
2; /* EOF is Control-B */

if (tcsetattr (STDIN_FILENO, TCSAFLUSH, &term) < 0)
err_sys("tcsetattr error");

exit (0);

Figure 18.10 Disable interrupt character and change end-of-file character

Note the following in this program.

¢ We modify the terminal characters only if standard input is a terminal device.
We call isatty (Section 18.9) to check this.

e We fetch the POSIX VDISABLE value using fpathconf.

e The function tcgetattr (Section 18.4) fetches a termios structure from the
kernel. After we’ve modified this structure, we call tcsetattr to set the
attributes. The only attributes that change are the ones we specifically modified.

o Disabling the interrupt key is different from ignoring the interrupt signal. The
program in Figure 18.10 simply disables the special character that causes the
terminal driver to generate SIGINT. We can still use the kill function to send
the signal to the process. o
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We now describe each of the special characters in more detail. We call these the
special input characters, but two of the characters, STOP and START (Control-S and
Control-Q), are also handled specially when output. Note that when recognized by the
terminal driver and processed specially, most of these special characters are then
discarded: they are not returned to the process in a read operation. The exceptions to
this are the newline characters (NL, EOL, EOL2) and the carriage return (CR).

CR

DISCARD

DSUSP

EOF

EOL

EOL2

ERASE

The carriage return character. We cannot change this character. This
character is recognized on input in canonical mode. When both ICANON
(canonical mode) and - ICRNL (map CR to NL) are set and IGNCR (ignore
CR) is not set, the CR character is translated to NL and has the same effect
as a NL character. This character is returned to the reading process
(perhaps after being translated to a NL).

The discard character. This character, recognized on input in extended
mode (IEXTEN), causes subsequent output to be discarded until another
DISCARD character is entered or the discard condition is cleared (see the
FLUSHO option). This character is discarded when processed (i.e., it is not
passed to the process).

The delayed-suspend job-control character. This character is recognized on
input in extended mode (IEXTEN) if job control is supported and if the
ISIG flag is set. Like the SUSP character, this delayed-suspend character
generates the SIGTSTP signal that is sent to all processes in the foreground
process group (refer to Figure 9.7). But the delayed-suspend character
generates a signal only when a process reads from the controlling terminal,
not when the character is typed. This character is discarded when
processed (i.e., it is not passed to the process).

The end-of-file character. This character is recognized on input in canonical
mode (ICANON). When we type this character, all bytes waiting to be read
are immediately passed to the reading process. If no bytes are waiting to be
read, a count of 0 is returned. Entering an EOF character at the beginning
of the line is the normal way to indicate an end of file to a program. This
character is discarded when processed in canonical mode (i.e., it is not
passed to the process).

The additional line delimiter character, like NL. This character is
recognized on input in canonical mode (ICANON) and is returned to the
reading process; however, this character is not normally used.

Another line delimiter character, like NL. This character is treated
identically to the EOL character.

The erase character (backspace). This character is recognized on input in
canonical mode (ICANON) and erases the previous character in the line, not
erasing beyond the beginning of the line. This character is discarded when
processed in canonical mode (i.e., it is not passed to the process).
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ERASE2

INTR

KILL

LNEXT

NL

QUIT

REPRINT

START

The alternate erase character (backspace). This character is treated exactly
like the erase character (ERASE).

The interrupt character. This character is recognized on input if the ISIG
flag is set and generates the SIGINT signal that is sent to all processes in
the foreground process group (refer to Figure 9.7). This character is
discarded when processed (i.e., it is not passed to the process).

The kill character. (The name “kill” is overused; recall the kill function
used to send a signal to a process. This character should be called the
line-erase character; it has nothing to do with signals.) It is recognized on
input in canonical mode (ICANON). It erases the entire line and is discarded
when processed (i.e., it is not passed to the process).

The literal-next character. This character is recognized on input in extended
mode (IEXTEN) and causes any special meaning of the next character to be
ignored. This works for all special characters listed in this section. We can
use this character to type any character to a program. The LNEXT character
is discarded when processed, but the next character entered is passed to the
process.

The newline character, which is also called the line delimiter. We cannot
change this character. This character is recognized on input in canonical
mode (ICANON). This character is returned to the reading process.

The quit character. This character is recognized on input if the ISIG flag is
set. The quit character generates the SIGQUIT signal, which is sent to all
processes in the foreground process group (refer to Figure 9.7). This
character is discarded when processed (i.e., it is not passed to the process).

Recall from Figure 10.1 that the difference between INTR and QUIT is that
the QUIT character not only terminates the process by default, but also
generates a core file.

The reprint character. This character is recognized on input in extended,
canonical mode (both TEXTEN and ICANON flags set) and causes all unread
input to be output (reechoed). This character is discarded when processed
(i.e., it is not passed to the process).

The start character. This character is recognized on input if the IXON flag is
set and is automatically generated as output if the IXOFF flag is set. A
received START character with IXON set causes stopped output (from a
previously entered STOP character) to restart. In this case, the START
character is discarded when processed (i.e., it is not passed to the process).

When IXOFF is set, the terminal driver automatically generates a START
character to resume input that it had previously stopped, when the new
input will not overflow the input buffer.
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STATUS

STOP

SusP

WERASE

The BSD status-request character. This character is recognized on input in
extended, canonical mode (both IEXTEN and ICANON flags set) and
generates the SIGINFO signal, which is sent to all processes in the
foreground process group (refer to Figure 9.7). Additionally, if the
NOKERNINFO flag is not set, status information on the foreground process
group is also displayed on the terminal. This character is discarded when
processed (i.e,, it is not passed to the process).

The stop character. This character is recognized on input if the TXON flag is
set and is automatically generated as output if the IXOFF flag is set. A
received STOP character with IXON set stops the output. In this case, the
STOP character is discarded when processed (i.e., it is not passed to the
process). The stopped output is restarted when a START character is
entered.

When IXOFF is set, the terminal driver automatically generates a STOP
character to prevent the input buffer from overflowing.

The suspend job-control character. This character is recognized on input if
job control is supported and if the ISIG flag is set. The suspend character
generates the SIGTSTP signal, which is sent to all processes in the
foreground process group (refer to Figure 9.7). This character is discarded
when processed (i.e., it is not passed to the process).

The word-erase character. This character is recognized on input in
extended, canonical mode (both TEXTEN and ICANON flags set) and causes
the previous word to be erased. First, it skips backward over any white
space (spaces or tabs), then backward over the previous token, leaving the
cursor positioned where the first character of the previous token was
located. Normally, the previous token ends when a white space character is
encountered. We can change this, however, by setting the ALTWERASE flag.
This flag causes the previous token to end when the first nonalphanumeric
character is encountered. The word-erase character is discarded when
processed (i.e., it is not passed to the process).

Another “character” that we need to define for terminal devices is the BREAK
character. BREAK is not really a character, but rather a condition that occurs during
asynchronous serial data transmission. A BREAK condition is signaled to the device
driver in various ways, depending on the serial interface.

Most old serial terminals have a key labeled BREAK that generates the BREAK condition,
which is why most people think of BREAK as a character. Some newer terminal keyboards
don’t have a BREAK key. On PCs, the break key might be mapped for other purpose. For
example, the Windows command interpreter can be interrupted by typing Control-BREAK.

For asynchronous serial data transmission, a BREAK is a sequence of zero-valued
bits that continues for longer than the time required to send one byte. The entire
sequence of zero-valued bits is considered a single BREAK. In Section 18.8, we'll see
how to send a BREAK with the tcsendbreak function.
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18.4

18.5

Getting and Setting Terminal Attributes

To get and set a termios structure, we call two functions: tcgetattr and
tcsetattr. This is how we examine and modify the various option flags and special
characters to make the terminal operate the way we want it to.

#include <termios.h>
int tcgetattr (int filedes, struct termios *termptr) ;
int tcsetattr(int filedes, int opt, const struct termios *termptr) ;

Both return: 0 if OK, -1 on error

Both functions take a pointer to a termios structure and either return the current
terminal attributes or set the terminal’s attributes. Since these two functions operate
only on terminal devices, errno is set to ENOTTY and -1 is returned if filedes does not
refer to a terminal device.

The argument opt for tcsetattr lets us specify when we want the new terminal
attributes to take effect. This argument is specified as one of the following constants.

TCSANOW The change occurs immediately.

TCSADRAIN The change occurs after all output has been transmitted. This option
should be used if we are changing the output parameters.

TCSAFLUSH The change occurs after all output has been transmitted.
Furthermore, when the change takes place, all input data that has not
been read is discarded (flushed).

The return status of tcsetattr confuses the programming. This function returns
OK if it was able to perform any of the requested actions, even if it couldn’t perform all
the requested actions. If the function returns OK, it is our responsibility to see whether
all the requested actions were performed. This means that after we call tcsetattr to
set the desired attributes, we need to call tcgetattr and compare the actual terminal’s
attributes to the desired attributes to detect any differences.

Terminal Option Flags

In this section, we list all the various terminal option flags, expanding the descriptions
of all the options from Figures 18.3 through 18.6. This list is alphabetical and indicates
in which of the four terminal flag fields the option appears. (The field a given option is
controlled by is usually not apparent from the option name alone.) We also note
whether each option is defined by the Single UNIX Specification and list the platforms
that support it.

All the flags listed specify one or more bits that we turn on or clear, unless we call
the flag a mask. A mask defines multiple bits grouped together from which a set of
values is defined. We have a defined name for the mask and a name for each value. For
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example, to set the character size, we first zero the bits using the character-size mask
CSIZE, and then set one of the values CS5, CS6, CS7, or CS8.

The six delay values supported by Linux and Solaris are also masks: BSDLY, CRDLY,

FFDLY, NLDLY, TABDLY, and VTDLY. Refer to the termio(7I) manual page on Solaris
for the length of each delay value. In all cases, a delay mask of 0 means no delay. If a
delay is specified, the OFILL and OFDEL flags determine whether the driver does an
actual delay or whether fill characters are transmitted instead.

Example

Figure 18.11 demonstrates the use of these masks to extract a value and to set a value.

#include "apue.h"
#include <termios.h>

int

main{void)

{

struct termios term;

if (tcgetattr (STDIN_ FILENO, &term) < 0)
err sys("tcgetattr error");

switch (term.c_cflag & CSIZE) ({
case C85:
printf ("5 bits/byte\n");
break;
case CS6:
printf ("6 bits/byte\n");
break;
case CS87:
printf ("7 bits/byte\n");
break;
case (CS8:
printf ("8 bits/byte\n");
break;
default:
printf ("unknown bits/byte\n");
}

term.c_cflag &= “CSIZE; /* zero out the bits */

term.c_cflag |[= CS8; /* set 8 bits/byte */

if (tcsetattr(STDIN_FILENO, TCSANOW, &term) < 0)
err_sys("tcsetattr error");

exit (0);

Figure 18.11 Example of tcgetattr and tcsetattr
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We now describe each of the flags.

ALTWERASE

BRKINT

BSDLY

CBAUDEXT

CCAR_OFLOW

CCTS_OFLOW

CDSR_OFLOW

CDTR_IFLOW

CIBAUDEXT

CIGNORE
CLOCAL

CMSPAR

CRDLY

(c_1flag, FreeBSD, Mac OS X) If set, an alternate word-erase
algorithm is used when the WERASE character is entered. Instead of
moving backward until the previous white space character, this flag
causes the WERASE character to move backward until the first
nonalphanumeric character is encountered.

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If this flag is
set and IGNBRK is not set, the input and output queues are flushed
when a BREAK is received, and a SIGINT signal is generated. This
signal is generated for the foreground process group if the terminal
device is a controlling terminal.

If neither IGNBRK nor BRKINT is set, then a BREAK is read as a single
character \ 0, unless PARMRK is set, in which case the BREAK is read as
the 3-byte sequence \377, \0, \0.

(c_oflag, XSI, Linux, Solaris) Backspace delay mask. The values for
the mask are BSO or BS1.

(c_cflag, Solaris) Extended baud rates. Used to enable baud rates
greater than B38400. (We discuss baud rates in Section 18.7.)

(c_cflag, FreeBSD, Mac OS X) Enable hardware flow control of the
output using the RS-232 modem carrier signal (DCD, known as Data-
Carrier-Detect). This is the same as the old MDMBUF flag.

(c_cflag, FreeBSD, Mac OS X, Solaris) Enable hardware flow control
of the output using the Clear-To-Send (CTS) RS-232 signal.

(c_cflag, FreeBSD, Mac OS X) Flow control the output according to
the Data-Set-Ready (DSR) RS-232 signal.

(c_cflag, FreeBSD, Mac OS X) Flow control the input according to the
Data-Terminal-Ready (DTR) RS-232 signal.

(c_cflag, Solaris) Extended input baud rates. Used to enable input
baud rates greater than B38400. (We discuss baud rates in Section 18.7.)

(c_cflag, FreeBSD, Mac OS X) Ignore control flags.

(c_cflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the
modem status lines are ignored. This usually means that the device is
directly attached. When this flag is not set, an open of a terminal device
usually blocks until the modem answers a call and establishes a
connection, for example.

(c_oflag, Linux) Select mark or space parity. If PARODD is set, the
parity bit is always 1 (mark parity). Otherwise, the parity bit is always 0
(space parity).

(c_oflag, XS, Linux, Solaris) Carriage return delay mask. The values
for the mask are CR0O, CR1, CR2, or CR3.
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CREAD

CRTSCTS

CRTS_IFLOW
CRTSXOFF

CSIZE

CSTOPB

ECHO

ECHOCTL

ECHOE

(c_cflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the
receiver is enabled, and characters can be received.

(c_cflag, FreeBSD, Linux, Mac OS X, Solaris) Behavior depends on
platform. For Solaris, enables outbound hardware flow control if set.
On the other three platforms, enables both inbound and outbound
hardware flow control (equivalent to CCTS_OFLOW | CRTS_IFLOW).

(c_cflag, FreeBSD, Mac OS X, Solaris) Request-To-Send (RTS) flow
control of input.

(c_cflag, Solaris) If set, inbound hardware flow control is enabled.
The state of the Request-To-Send RS-232 signal controls the flow control.

(c_cflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) This field is a
mask that specifies the number of bits per byte for both transmission
and reception. This size does not include the parity bit, if any. The
values for the field defined by this mask are CS5, CS6, CS7, and €S8, for
5, 6,7, and 8 bits per byte, respectively.

(c_cflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, two stop
bits are used; otherwise, one stop bit is used.

(c_1flag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, input
characters are echoed back to the terminal device. Input characters can
be echoed in either canonical or noncanonical mode.

(c_1lflag, FreeBSD, Linux, Mac OS X, Solaris) If set and if ECHO is set,
ASCII control characters (those characters in the range 0 through octal
37, inclusive) other than the ASCII TAB, the ASCH NL, and the START
and STOP characters are echoed as ~X, where X is the character formed
by adding octal 100 to the control character. This means that the ASCII
Control-A character (octal 1) is echoed as “A. Also, the ASCII DELETE
character (octal 177) is echoed as ~2. If this flag is not set, the ASCII
control characters are echoed as themselves. As with the ECHO flag, this
flag affects the echoing of control characters in both canonical and
noncanonical modes.

Be aware that some systems echo the EOF character differently, since its

typical value is Control-D. (Control-D is the ASCI EOT character,

which can cause some terminals to hang up.) Check your manual.

(c_1lflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if
ICANON is set, the ERASE character erases the last character in the
current line from the display. This is usually done in the terminal driver
by writing the three-character sequence backspace, space, backspace.

If the WERASE character is supported, ECHOE causes the previous word
to be erased using one or more of the same three-character sequence.

If the ECHOPRT flag is supported, the actions described here for ECHOE
assume that the ECHOPRT flag is not set.
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ECHOK

ECHOKE

ECHONL

ECHOPRT

EXTPROC

FFDLY

FLUSHO

HUPCL

ICANON

(c_1flag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if
ICANON is set, the KILL character erases the current line from the
display or outputs the NL character (to emphasize that the entire line
was erased).

If the ECHOKE flag is supported, this description of ECHOK assumes that
ECHOKE is not set.

(c_1flag, FreeBSD, Linux, Mac OS X, Solaris) If set and if ICANON is
set, the KILL character is echoed by erasing each character on the line.
The way in which each character is erased is selected by the ECHOE and
ECHOPRT flags.

(c_1flag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if
TICANON is set, the NL character is echoed, even if ECHO is not set.

(c_1flag, FreeBSD, Linux, Mac OS X, Solaris) If set and if both
ICANON and ECHO are set, then the ERASE character (and WERASE
character, if supported) cause all the characters being erased to be
printed as they are erased. This is often useful on a hard-copy terminal
to see exactly which characters are being deleted.

(c_1flag, FreeBSD, Mac OS X) If set, canonical character processing is
performed external to the operating system. This can be the case if the
serial communication peripheral card can offload the host processor by
doing some of the line discipline processing. This can also be the case
when using pseudo terminals (Chapter 19).

(c_oflag, XSI, Linux, Solaris) Form feed delay mask. The values for
the mask are FFO or FF1.

(c_1flag, FreeBSD, Linux, Mac OS X, Solaris) If set, output is being
flushed. This flag is set when we type the DISCARD character; the flag
is cleared when we type another DISCARD character. We can also set or
clear this condition by setting or clearing this terminal flag.

(c_cflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the
modem control lines are lowered (i.e., the modem connection is broken)
when the last process closes the device.

(c_1flag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, canonical
mode is in effect (Section 18.10). This enables the following characters:
EOF, EOL, EOL2, ERASE, KILL, REPRINT, STATUS, and WERASE. The
input characters are assembled into lines.

If canonical mode is not enabled, read requests are satisfied directly
from the input queue. A read does not return until at least MIN bytes
have been received or the timeout value TIME has expired between
bytes. Refer to Section 18.11 for additional details.
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ICRNL

IEXTEN

IGNBRK

IGNCR

IGNPAR

IMAXBEL

INLCR

INPCK

ISIG

ISTRIP

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if
IGNCR is not set, a received CR character is translated into a NL
character.

(c_1flag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the
extended, implementation-defined special characters are recognized and
processed.

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, a
BREAK condition on input is ignored. See BRKINT for a way to have a
BREAK condition either generate a SIGINT signal or be read as data.

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, a
received CR character is ignored. If this flag is not set, it is possible to
translate the received CR into a NL character if the ICRNL flag is set.

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, an
input byte with a framing error (other than a BREAK) or an input byte
with a parity error is ignored.

(c_iflag, FreeBSD, Linux, Mac OS X, Solaris) Ring bell when input
queue is full.

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, a
received NL character is translated into a CR character.

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set,
input parity checking is enabled. If INPCK is not set, input parity
checking is disabled.

Parity “generation and detection” and “input parity checking” are two
different things. The generation and detection of parity bits is controlled
by the PARENB flag. Setting this flag usually causes the device driver for
the serial interface to generate parity for outgoing characters and to
verify the parity of incoming characters. The flag PARODD determines
whether the parity should be odd or even. If an input character arrives
with the wrong parity, then the state of the INPCK flag is checked. If this
flag is set, then the IGNPAR flag is checked (to see whether the input
byte with the parity error should be ignored); if the byte should not be
ignored, then the PARMRK flag is checked to see what characters should
be passed to the reading process.

(c_1flag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the input
characters are compared against the special characters that cause the
terminal-generated signals to be generated (INTR, QUIT, SUSP, and
DSUSP); if equal, the corresponding signal is generated.

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set,
valid input bytes are stripped to 7 bits. When this flag is not set, all
8 bits are processed.
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IUCLC

IXANY

IXOFF

IXON

MDMBUF

NLDLY

NOFLSH

NOKERNINFO

OCRNL

OFDEL

OFILL

OLCUC

(c_iflag, Linux, Solaris) Map uppercase to lowercase on input.

(c_iflag, XSI, FreeBSD, Linux, Mac OS X, Solaris) Enable any
characters to restart output. '

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set,
start-stop input control is enabled. When it notices that the input queue
is getting full, the terminal driver outputs a STOP character. This
character should be recognized by the device that is sending the data
and cause the device to stop. Later, when the characters on the input
queue have been processed, the terminal driver will output a START
character. This should cause the device to resume sending data.

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set,
start-stop output control is enabled. When the terminal driver receives
a STOP character, output stops. While the output is stopped, the next
START character resumes the output. If this flag is not set, the START
and STOP characters are read by the process as normal characters.

(c_cflag, FreeBSD, Mac OS X) Flow control the output according to
the modem carrier flag. This is the old name for the CCAR_OFLOW flag.

(c_oflag, XSI, Linux, Solaris) Newline delay mask. The values for the
mask are NLO or NL1.

(c_1flag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) By default,
when the terminal driver generates the SIGINT and SIGQUIT signals,
both the input and output queues are flushed. Also, when it generates
the SIGSUSP signal, the input queue is flushed. If the NOFLSH flag is
set, this normal flushing of the queues does not occur when these
signals are generated.

(c_1flag, FreeBSD, Mac OS X) When set, this flag prevents the
STATUS character from printing information on the foreground process
group. Regardless of this flag, however, the STATUS character still
causes the SIGINFO signal to be sent to the foreground process group.

(c_oflag, X8I, FreeBSD, Linux, Solaris) If set, map CR to NL on
output.

(c_oflag, XSI, Linux, Solaris) If set, the output fill character is ASCII
DEL; otherwise, it's ASCIINUL. See the OFILL flag.

(c_oflag, XSI, Linux, Solaris) If set, fill characters (either ASCII DEL-or
ASCII NUL; see the OFDEL flag) are transmitted for a delay, instead of
using a timed delay. See the six delay masks: BSDLY, CRDLY, FFDLY,
NLDLY, TABDLY, and VIDLY.

(c_oflag, Linux, Solaris) If set, map lowercase characters to uppercase
characters on output.
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ONLCR

ONLRET

ONOCR

ONOEOT

OPOST

OXTABS

PARENB

PAREXT

PARMRK

PARODD

PENDIN

(c_oflag, XSI, FreeBSD, Linux, Mac OS X, Solaris) If set, map NL to
CR-NL on output.

(c_oflag, XSI, FreeBSD, Linux, Solaris) If set, the NL character is
assumed to perform the carriage return function on output.

{c_oflag, XSI, FreeBSD, Linux, Solaris) If set, a CR is not output at
column 0.

(c_oflag, FreeBSD, Mac OS X) If set, EOT (D) characters are
discarded on output. This may be necessary on some terminals that
interpret the Control-D as a hangup.

(c_cflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set,
implementation-defined output processing takes place. Refer to
Figure 18.6 for the various implementation-defined flags for the
c_oflagword.

(c_oflag, FreeBSD, Mac OS X) If set, tabs are expanded to spaces on
output. This produces the same effect as setting the horizontal tab delay
(TABDLY) to XTABS or TAB3.

(c_cflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, parity
generation is enabled for outgoing characters, and parity checking is
performed on incoming characters. The parity is odd if PARODD is set;
otherwise, it is even parity. See also the discussion of the INPCK,
IGNPAR, and PARMRK flags.

(c_cflag, Solaris) Select mark or space parity. If PARODD is set, the
parity bit is always 1 (mark parity). Otherwise, the parity bit is always 0
(space parity).

(c_iflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set and
it ZGNPAR is not set, a byte with a framing error (other than a BREAK)
or a byte with a parity error is read by the process as the three-character
sequence \377, \0, X, where X is the byte received in error. If ISTRIP
is not set, a valid \377 is passed to the process as \377, \377. If
neither IGNPAR nor PARMRK is set, a byte with a framing error (other
than a BREAK) or with a parity error is read as a single character \ 0.

(c_cflag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the
parity for outgoing and incoming characters is odd parity. Otherwise,
the parity is even parity. Note that the PARENB flag controls the
generation and detection of parity.

The PARODD flag also controls whether mark or space parity is used
when either the CMSPAR or PAREXT flag is set.

(c_1flag, FreeBSD, Linux, Mac OS X, Solaris) If set, any input that has
not been read is reprinted by the system when the next character is
input. This action is similar to what happens when we type the
REPRINT character.
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TABDLY (c_oflag, XSI, Linux, Solaris) Horizontal tab delay mask. The values
for the mask are TABO, TAB1, TAB2, or TAB3.

The value XTABS is equal to TAB3. This value causes the system to
expand tabs into spaces. The system assumes a tab stop every eight
spaces, and we can’t change this assumption.

TOSTOP (c_1flag, POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if the
implementation supports job control, the SIGTTOU signal is sent to the
process group of a background process that tries to write to its
controlling terminal. By default, this signal stops all the processes in the
process group. This signal is not generated by the terminal driver if the
background process that is writing to the controlling terminal is either
ignoring or blocking the signal.

VTDLY (c_oflag, XS, Linux, Solaris) Vertical tab delay mask. The values for
the mask are VTO or VT1.

XCASE (c_1lflag, Linux, Solaris) If set and if ICANON is also set, the terminal is
assumed to be uppercase only, and all input is converted to lowercase.
To input an uppercase character, precede it with a backslash. Similarly,
an uppercase character is output by the system by being preceded by a
backslash. (This option flag is obsolete today, since most, if not all,
uppercase-only terminals have disappeared.)

stty Command

All the options described in the previous section can be examined and changed from
within a program, with the tcgetattr and tcsetattr functions (Section 18.4) or
from the command line (or a shell script), with the stty(1l) command. This command
is simply an interface to the first six functions that we listed in Figure 18.7. If we
execute this command with its -a option, it displays all the terminal options:

$ stty -a

speed 9600 baud; 25 rows; 80 columns;

1flags: icanon isig iexten echo echoe -echok echoke -echonl echoctl
-echoprt -altwerase -noflsh -tostop -flusho pendin -nokerninfo
-extproc

iflags: -istrip icrnl -inlcr -igncr ixon -ixoff ixany imaxbel -ignbrk
brkint -inpck -ignpar -parmrk

oflags: opost onlcr -ocrnl -oxtabs -onocr -onlret

cflags: cread cs8 -parenb -parodd hupcl -clocal -cstopb -crtscts
-dsrflow -dtrflow -mdmbuf

cchars: discard = "0; dsusp = "Y; eof = “D; eol = <undef>;
eol2 = <undef>; erase = "H; erase2 = "?; intr = “c; kill = "U;
lnext = “V; min = 1; quit = °; reprint = “R; start = "Q;
status = “T; stop = °S; susp = "Z; time = 0; werase = “W;
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Option names preceded by a hyphen are disabled. The last four lines display the
current settings for each of the terminal special characters (Section 18.3). The first line
displays the number of rows and columns for the current terminal window; we discuss
this in'Section 18.12.

The stty command uses its standard input to get and set the terminal option flags. Although
some older implementations used standard output, POSIX.1 requires that the standard input
be used. All four implementations discussed in this text provide versions of stty that operate
onstandard input. This means that we can type

stty -a </dev/ttyla

if we are interested in discovering the settings on the terminal named tty1la.

Baud Rate Functions

The term baud rate is a historical term that should be referred to today as “bits per
second.” Although most terminal devices use the same baud rate for both input and
output, the capability exists to set the two to different values, if the hardware allows
this.

#include <termios.h>
speed_t cfgetispeed(const struct termios *fermptr) ;
speed_t cfgetospeed(const struct termios *termptr) ;
Both return: baud rate value
int cfsetispeed(struct termios *fermptr, speed t speed) ;

int cfsetospeed(struct termios *termptr, speed_t speed) ;

Both return: 0 if OK, -1 on error

The return value from the two cfget functions and the speed argument to the two
cfset functions are one of the following constants: B50, B75, B110, B134, B150, B200,
B300, B600, B1200,B1800, B2400, B4800, B9600, B19200, or B38400. The constant
BO means “hang up.” When B0 is specified as the output baud rate when tcsetattr
is called, the modem control lines are no longer asserted.

Most systems define additional baud rate values, such as B57600 and B115200.

To use these functions, we must realize that the input and output baud rates are
stored in the device’s termios structure, as shown in Figure 18.8. Before calling either
of the cfget functions, we first have to obtain the device’s termios structure using
tcgetattr. Similarly, after calling either of the two cfset functions, all we’ve done is
set the baud rate in a termios structure. For this change to affect the device, we have
to call tcsetattr. If there is an error in either of the baud rates that we set, we may
not find out about the error until we call tcsetattr.
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The four baud rate functions exist to insulate applications from differences in the
way that implementations represent baud rates in the termios structure. BSD-derived
platforms tend to store baud rates as numeric values equal to the rates (i.e., 9,600 baud
is stored as the value 9,600), whereas Linux and System V-derived platforms tend to
encode the baud rate in a bitmask. The speed values we get from the cfget functions
and pass to the cfset functions are untranslated from their representation as they are
stored in the termios structure.

Line Control Functions

The following four functions provide line control capability for terminal devices. All
four require that filedes refer to a terminal device; otherwise, an error is returned with
errno set to ENOTTY.

#include <termios.h>

int tcdrain(int filedes) ;

int tcflow(int filedes, int action) ;
int tcflush(int filedes, int queue) ;

int tcsendbreak (int filedes, int duration) ;

All four return: 0 if OK, -1 on error

The tcdrain function waits for all output to be transmitted. The tcflow function
gives us control over both input and output flow control. The action argument must be
one of the following four values:

TCOOFF Output is suspended.
TCOON  Output that was previously suspended is restarted.

TCIOFF The system transmits a STOP character, which should cause the terminal
device to stop sending data.

TCION The system transmits a START character, which should cause the terminal
device to resume sending data.

The tcflush function lets us flush (throw away) either the input buffer (data that
has been received by the terminal driver, which we have not read) or the output buffer
(data that we have written, which has not yet been transmitted). The gueue argument
must be one of the following three constants:

TCIFLUSH The input queue is flushed.
TCOFLUSH The output queue is flushed.

TCIOFLUSH Both the input and the output queues are flushed.
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The tcsendbreak function transmits a continuous stream of zero bits for a
specified duration. If the duration argument is 0, the transmission lasts between 0.25
seconds and 0.5 seconds. POSIX.1 specifies that if duration is nonzero, the transmission
time is implementation dependent.

Terminal Identification

Historically, the name of the controlling terminal in most versions of the UNIX System
has been /dev/tty. POSIX.1 provides a runtime function that we can call to determine
the name of the controlling terminal.

#include <stdio.h»>
char *ctermid(char *ptr);

Returns: pointer to name of controlling terminal
on success, pointer to empty string on error

If ptr is non-null, it is assumed to point to an array of at least L_ctermid bytes, and the
name of the controlling terminal of the process is stored- in the array. The constant
L_ctermid is defined in <stdio.h>. If ptr is a null pointer, the function allocates
room for the array (usually as a static variable). Again, the name of the controlling
terminal of the process is stored in the array.

In both cases, the starting address of the array is returned as the value of the
function. Since most UNIX systems use /dev/tty as the name of the controlling
terminal, this function is intended to aid portability to other operating systems.

All four platforms described in this text return the string /dev/tty when we call ctermid.

Example—ctermid Function

Figure 18.12 shows an implementation of the POSIX.1 ctermid function.

#include <stdio.h>
#include <string.h>

static char ctermid_name (L_ctermid];

char *
ctermid(char ‘*str)
{ :
if (str == NULL)
str = ctermid_name;
return(strcpy(str, "/dev/tty")); /* strcpy() returns str */

Figure 18.12 Implementation of POSIX.1 ctermid function
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Note that we can’t protect against overrunning the caller’s buffer, because we have
no way to determine its size. ‘ o

Two functions that are more interesting for a UNIX system are isatty, which
returns true if a file descriptor refers to a terminal device, and ttyname, which returns
the pathname of the terminal device that is open on a file descriptor.

#include <unistd.h>

int isatty(int filedes) ;

Returns: 1 (true) if terminal device, 0 (false) otherwise

char *ttyname (int filedes) ; ' s o {

Returns: pointer to pathname of terminal, NULL on error I

Example—isatty Function

The isatty function is trivial to implement, as we show in Figure 18.13. We simply try
one of the terminal-specific functions (that doesn’t change anything if it succeeds) and
look at the return value.

#include <termios.h>

int
isatty(int £fd)

{

struct termios ts;

return(tcgetattr(fd, &ts) != -1); /* true if no error (is a tty) */

Figure 18.13 Implementation of POSIX.1 isatty function .

We test our isatty function with the program in Figure 18.14.

#include "apue.h"

int :

main (void)

{ .
printf("fd 0: %$s\n", isatty(0) ? "tty" : "not a tty");
printf ("fd 1: %s\n", isatty(l) ? "tty" : "not a tty");
printf ("fd 2: %s\n", isatty(2) ? "tty" : "not a tty");
exit (0);

}

Figure 18.14 Test the isatty function
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When we run the program from Figure 18.14, we get the following output:

$ ./a.out
fd 0: tty
fd 1: tty
fd 2: tty

$ ./a.out </etc/passwd 2>/dev/null
fd 0: not a tty

fd 1: tty

fd 2: not a tty

Example—t tyname Function

The ttyname function (Figure 18.15) is longer, as we have to search all the device
entries, looking for a match.

#include <sys/stat.h>
#include <dirent.h>
#include <limits.h>
#include <string.h>
#include <termios.h>
#include <unistd.h>
#include <stdlib.h>

struct devdir {
struct devdir *d_next;

char *d_name;
Vi
static struct devdir *head;
static struct devdir *tail;
static char pathname [ _POSIX_PATH MAX + 1];

static void
add (char *dirname)

{

struct devdir *ddp;
int len;

len = strlen(dirname) ;

/*
* Skip ., .., and /dev/fd.
*/
if ((dirname([len-1] == ’'.’) && (dirname(len-2] == '/’ ||
(dirname [len-2] == .’ && dirname[len-3] == '/’)))
return;
if (strcmp(dirname, "/dev/fd") == 0)
return;

ddp = malloc(sizeof (struct devdir));
if (ddp == NULL)
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return;

ddp->d_name = strdup(dirname);

if (ddp->d name == NULL) {
free(ddp) ;
return;

}

ddp->d_next = NULL;

if (tail == NULL) ({
head = ddp;
tail-= ddp;

-} else {
tail->d_next = ddp;
tail = ddp;

}

}

static void
cleanup {void)

{

struct devdir *ddp, *nddp;

ddp = head;

while (ddp != NULL) {
nddp = ddp->d_next;
free (ddp->d_name) ;
free(ddp) ;
ddp = nddp;

}

head

tail

NULL;
NULL;

}

static char *
searchdir (char *dirname, struct stat *fdstatp)

{

struct stat devstat;
DIR *dp;
int devlen;

struct dirent *dirp;

strcpy (pathname, dirname);

if ((dp = opendir (dirname)) == NULL)
return (NULL) ;

strcat (pathname, "/");

devlen = strlen(pathname) ;

while ((dirp = readdir(dp)) != NULL) {
strncpy (pathname + devlen, dirp->d_name,

_POSIX_PATH_MAX - devlen);

/*
* gkip aliases.

*/
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if (strcmp(pathname, "/dev/stdin") == 0 ||
strcmp (pathname, "/dev/stdout") == 0 ||
strcmp (pathname, "/dev/stderr") == 0)
continue;
if (stat (pathname, &devstat) < 0)
continue;
if (S_ISDIR(devstat.st_mode)) {
add (pathname) ;
continue;
}
if (devstat.st_ino == fdstatp->st_ino &&
devstat.st_dev == fdstatp->st dev) { /* found a match */

closedir (dp) ;
return(pathname) ;

}

closedir(dp) ;
return (NULL) ;

}

char *

' ttyname (int £d)

{

struct stat fdstat;
struct devdir *ddp;
char *rval;
if (isatty(fd) == 0)

return (NULL) ;

if (fstat(fd, &fdstat) < 0)
return (NULL) ;

if (S_ISCHR(fdstat.st_mode) == 0)
return (NULL) ;

rval = searchdir("/dev", &fdstat);
if (rval == NULL) { :
for (ddp = head; ddp != NULL; ddp = ddp->d_next)
if ((rval = searchdir(ddp->d name, &fdstat)) != NULL)
break;

}

cleanup () ;
return(rval) ;

Figure 18.15 Implementation of POSIX.1 t t yname function

The technique is to read the /dev directory, looking for an entry with the same
device number and i-node number. Recall from Section 4.23 that each file system has a
unique device number (the st_dev field in the stat structure, from Section 4.2), and
each directory entry in that file system has a unique i-node number (the st_ino field in
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the stat structure). We assume in this function that when we hit a matching device
number and matching i-node number, we’ve located the desired directory entry. We
could also verify that the two entries have matching st_rdev fields (the major and
minor device numbers for the terminal device) and that the directory entry is also a
character special file. But since we've already verified that the file descriptor argument
is both a terminal device and a character special file, and since a matching device
number and i-node number is unique on a UNIX system, there is no need for the
additional comparisons.

The name of our terminal might reside in a subdirectory in /dev. Thus, we might
need to search the entire file system tree under /dev. We skip several directories that
might produce incorrect or odd-looking results: /dev/ ., /dev/..,and /dev/fd. We
also skip the aliases /dev/stdin, /dev/stdout, and /dev/stderr, since they are
symbolic links to files in /dev/fd.

We can test this implementation with the program shown in Figure 18.16.

#include "apue.h"
int
main (void)

{

char *name;

if (isatty(0)) {
name = ttyname(0);
if (name == NULL)
name = "undefined";
} else {
name = "not a tty";
}

printf ("fd 0: %s\n", name);
if (isatty (1)) {
name = ttyname(l);
if (name == NULL)
name = "undefined";
} else {
name = "not a tty";

printf ("fd 1: %s\n", name);
if (isatty(2)) { '
name = ttyname(2);

if (name == NULL)
name = "undefined";
} else {
' name = "not a tty";

printf ("fd 2: %s\n", name);
exit (0);

Figure 18.16 Test the ttyname function
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Running the program from Figure 18.16 gives us

$ ./a.out < /dev/console 2> /dev/null
fd 0: /dev/console

fd 1: /dev/ttyp3

fd 2: not a tty

18.10 Canonical Mode

Canonical mode is simple: we issue a read, and the terminal driver returns when a line
has been entered. Several conditions cause the read to return.

* The read returns when the requested number of bytes have been read. We don't
have to read a complete iine. If we read a partial line, no information is lost; the
next read starts where the previous read stopped.

® The read returns when a line delimiter is encountered. Recall from Section 18.3
that the following characters are interpreted as end of line in canonical mode:
NL, EOL, EOL2, and EOF. Also, recall from Section 18.5 that if ICRNL is set and
if IGNCR is not set, then the CR character also terminates a line, since it acts just.
like the NL character.

Realize that of these five line delimiters, one (EOF) is discarded by the terminal
driver when it's processed. The other four are returned to the caller as the last
character of the line.

* The read also returns if a signal is caught and if the function is not automatically
restarted (Section 10.5).

Example—getpass Function

We now show the function getpass, which reads a password of some type from the
user at a terminal. This function is called by the 1ogin(1) and crypt(1) programs. To
read the password, the function must turn off echoing, but it can leave the terminal in
canonical mode, as whatever we type as the password forms a complete line.
Figure 18.17 shows a typical implementation on a UNIX system.

There are several points to consider in this example.

* Instead of hardwiring /dev/tty into the program, we call the function
ctermid to open the controlling terminal.

* We read and write only to the controlling terminal and return an error if we
can’t open this device for reading and writing. There are other conventions to
use. The BSD version of getpass reads from standard input and writes to
standard error if the controlling terminal can’t be opened for reading and
writing. The System V version always writes to standard error but reads only
from the controlling terminal.
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#include <signal.h>
#include <stdio.h>
#include <termios.h>
#define MAX PASS LEN 8 /* max #chars for user to enter */
char *

getpass (const char *prompt)

{

static char buf [MAX PASS LEN + 1]; /* null byte at end */
char *ptr;

sigset_t sig, osig;

struct termios ts, ots;

FILE *fp;

int c;

if ((fp = fopen(ctermid(NULL), "r+")) == NULL)

return (NULL) ;
setbuf (fp, NULL) ;

sigemptyset (&sig) ;

sigaddset (&sig, SIGINT); ' /* block SIGINT */
sigaddset (&sig, SIGTSTP); /* block SIGTSTP */
sigprocmask (SIG_BLOCK, &sig, &osig); /* and save mask */
tcgetattr (fileno (fp), &ts); /* save tty state */

ots = ts; ' /* structure copy */
ts.c_1flag &= ~(ECHO | ECHOE | ECHOK | ECHONL);

tcsetattr (fileno (fp), TCSAFLUSH, &ts);
fputs (prompt, £p);

ptr = buf;
while ((c = getc(fp)) != EOF && .c != ‘\n’)
if (ptr < &buf [MAX PASS_LEN])
*ptr++ = C;
*ptr = 0; /* null terminate */
putc(‘\n’, fp); /* we echo a newline */

tcsetattr (fileno (fp), TCSAFLUSH, &ots); /* restore TTY state */

sigprocmask (SIG_SETMASK, &osig, NULL); /* restore mask */
fclose (fp) ; /* done with /dev/tty */
return (buf) ;

Figure 18.17 Implementation of getpass function

We block the two signals SIGINT and SIGTSTP. If we didn't do this, entering
the INTR character would abort the program and leave the terminal with
echoing disabled. Similarly, entering the SUSP character would stop the
program and return to the shell with echoing disabled. We choose to block the
signals while we have echoing disabled. If they are generated while we're
reading the password, they are held until we return. There are other ways to
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handle these signals. Some versions just ignore SIGINT (saving its previous
action) while in getpass, resetting the action for this signal to its previous
value before returning. This means that any occurrence of the signal while it’s
ignored is lost. Other versions catch SIGINT (saving its previous action) and if
the signal is caught, send themselves the signal with the kill function after
resetting the terminal state and signal action. None of the versions of getpass
catch, ignore, or block SIGQUIT, so entering the QUIT character aborts the
program and probably leaves the terminal with echoing disabled.

Be aware that some shells, notably the Korn shell, turn echoing back on
whenever they read interactive input. These shells are the ones that provide
command-line editing and therefore manipulate the state of the terminal every
time we enter an interactive command. So, if we invoke this program under
one of these shells and abort it with the QUIT character, it may reenable echoing
for us. Other shells that don’t provide this form of command-line editing, such
as the Bourne shell, will abort the program and leave the terminal in no-echo
mode. If we do this to our terminal, the stty command can reenable echoing.

We use standard 1/0 to read and write the controlling terminal. We specifically
set the stream to be unbuffered; otherwise, there might be some interactions
between the writing and reading of the stream (we would need some calls to
fflush). We could have also used unbuffered 1/O (Chapter 3), but we would
have to simulate the getc function using read.

We store only up to eight characters as the password. Any additional characters
that are entered are ignored.

The program in Figure 18.18 calls getpass and prints what we enter to let us verify

that the ERASE and KILL characters work (as they should in canonical mode).

#include "apue.h"

char

int

*getpass (const char *);

main (void)

{

char *ptr;

if ({ptr = getpass("Enter password:")) == NULL)

err_sys("getpass error");

printf ("password: %s\n", ptr);

/* now use password (probably encrypt it) ... */
while (*ptr != 0)

*ptr++ = 0; /* zero it out when we’'re done with it */
exit (0);

Figure 18.18 Call the getpass function



Section 18.11 Noncanonical Mode 663

18.11

Whenever a program that calls getpass is done with the cleartext password, the
program should zero it out in memory, just to be safe. If the program were to generate a
core file that others might be able to read or if some other process were somehow able
to read our memory, they might be able to read the cleartext password. (By “cleartext,”
we mean the password that we type at the prompt that is printed by getpass. Most
UNIX system programs then modify this cleartext password into an “encrypted”
password. The field pw_passwd in the password file, for example, contains the
encrypted password, not the cleartext password.) ]

Noncanonical Mode

Noncanonical mode is specified by turning off the ICANON flag in the c_1flag field ot
the termios structure. In noncanonical mode, the input data is not assembled into
lines. The following special characters (Section 18.3) are not processed: ERASE, KILL,
EOF, NL, EOL, EOL2, CR, REPRINT, STATUS, and WERASE.

As we said, canonical mode is easy: the system returns up to one line at a time. But
with noncanonical mode, how does the system know when to return data to us? If it
returned one byte at a time, overhead would be excessive. (Recall Figure 3.5, which
showed the overhead in reading one byte at a time. Each time we doubled the amount
of data returned, we halved the system call overhead.) The system can’t always return
multiple bytes at a time, since sometimes we don’t know how much data to read until
we start reading it.

The solution is to tell the system to return when either a specified amount of data
has been read or after a given amount of time has passed. This technique uses two
variables in the c_cc array in the termios structure: MIN and TIME. These two
elements of the array are indexed by the names VMIN and VTIME.

MIN specifies the minimum number of bytes before a read returns. TIME specifies
the number of tenths of a second to wait for data to arrive. There are four cases.

Case A: MIN >0, TIME >0

TIME specifies an interbyte timer that is started only when the first byte is
received. If MIN bytes are received before the timer expires, read returns MIN
bytes. If the timer expires before MIN bytes are received, read returns the
bytes received. (At least one byte is returned if the timer expires, because the
timer is not started until the first byte is received.) In this case, the caller blocks
until the first byte is received. If data is already available when read is called,
it is as if the data had been received immediately after the read.

Case B: MIN > 0, TIME ==

The read does not return until MIN bytes have been received. This can cause a
read to block indefinitely.



664 Terminal [/O

Chapter 18

Case C: MIN ==0, TIME >0

TIME specifies a read timer that is started when read is called. (Compare this
to case A, in which a nonzero TIME represented an interbyte timer that was not
started until the first byte was received.) The read returns when a single byte
is received or when the timer expires. If the timer expires, read returns 0.

Case D: MIN ==0, TIME ==

If some data is available, read returns up to the number of bytes requested. If
no data is available, read returns 0 immediately.

Realize in all these cases that MIN is only a minimum. If the program requests more
than MIN bytes of data, it’s possible to receive up to the requested amount. This also
applies to cases C and D, in which MIN is 0.
Figure 18.19 summarizes the four cases for noncanonical input. In this figure, nbytes
is the third argument to read (the maximum number of bytes to return).

Example

TIME > 0

TIME == 0

MIN > 0

MIN == 0

A: read returns [MIN, nbytes)
before timer expires;
read returns [1, MIN)
if timer expires.
(TIME = interbyte timer.
Caller can block indefinitely.)

C: read returns {1, nbytes]
before timer expires;
read returns 0
if timer expires.

(TIME = read timer.)

B: read returns [MIN, nbytes]
when available.

(Caller can block indefinitely.)

D: read returns [0, nbytes]
immediately.

Figure 18.19 Four cases for noncanonical input

Be aware that POSIX.1 allows the subscripts VMIN and VTIME to have the same values as VEOF
and VEOL, respectively. Indeed, Solaris does this for backward compatibility with older

versions of System V. This creates a portability problem, however.

In going from

noncanonical to canonical mode, we must now restore VEOF and VEOL also. If VMIN equals
VEOF and we don't restore their values, when we set VMIN to its typical value of 1, the
end-of-file character becomes Control-A. The easiest way around this problem is to save the
entire termios structure when going into noncanonical mode and restore it when going back
to canonical mode.

The program in Figure 18.20 defines the tty cbreak and tty raw functions that set
the terminal in cbreak mode and raw mode. (The terms cbreak and raw come from the’
Version 7 terminal driver.) We can reset the terminal to its original state (the state before
either of these functions was called) by calling the function tty reset.
If we've called tty cbreak, we need to call tty_reset before calling tty raw.
The same goes for calling tty cbreak after calling tty raw. This improves the
chances that the terminal will be left in a usable state if we encounter any errors.
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Two additional functions are also provided: tty_atexit can be established as an
exit handler to ensure that the terminal mode is reset by exit, and tty_termios
returns a pointer to the original canonical mode termios structure.

#include "apue.h"
#include <termios.h>
#include <errno.h>

static struct termios save_termios;
static int ttysavefd = -1;
static enum { RESET, RAW, CBREAK } ttystate = RESET;

int

tty cbreak(int fd) /* put terminal into a cbreak mode */

{ .
int err;
struct termios buf;

if (ttystate != RESET) {
errno = EINVAL;
return(-1);
}
if (tcgetattr(fd, &buf) < 0)
return(-1);
save_termios = buf; /* structure copy */

/*
* Echo off, canonical mode off.
*/

buf.c_lflag &= ~(ECHO | ICANON);

/*
* Case B: 1 byte at a time, no timer.
*/
buf.c_cc[VMIN] = 1;
buf.c_cc[VTIME] = 0;
if (tcsetattr(fd, TCSAFLUSH, &buf) < 0)
return(-1); V

/*
* Verify that the changes stuck. tcsetattr can return 0 on
* partial success.
*/
if (tcgetattr(fd, &buf) < 0) {
err = errno;
tcsetattr (fd, TCSAFLUSH, &save_termios);
errno = err;
return(-1);

if ((buf.c_lflag & (ECHO | ICANON)) || buf.c_cc[VMIN] != 1 []
buf.c_cc[VTIME] != 0) {
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/*
* Only some of the changes were made. Restore the
* original settings.
*/

tcsetattr (£d, TCSAFLUSH, &save termios) ;

errno = EINVAL;

return(-1) ;

}

ttystate = CBREAK;
ttysavefd = fd;

return(0) ;

}

int

tty_raw(int £d) /* put terminal into a raw mode */
int err;

struct termios buf;

if (ttystate != RESET) ({
errno = EINVAL;
return(-1);
}
if (tcgetattr(fd, &buf) < 0)
return(-1);
save_termios = buf; /* structure copy */

/-A-
* Echo off, canonical mode off, extended input
* processing off, signal chars off.
*/

buf.c_1flag &= “(ECHO | ICANON | IEXTEN | ISIG);

/*
* No SIGINT on BREAK, CR-to-NL off, input parity
* check off, don’t strip 8th bit on input, output
* flow control off.

*/

buf.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);

/*

* Clear size bits, parity checking off.
*/

buf.c_cflag &= “(CSIZE | PARENB);

/*
* Set 8 bits/char.
*/

buf.c cflag |= CS8;

/*
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}

int

tty

{

* Qutput processing off.
*/
buf.c_oflag &= ~ (OPOST) ;

/*
* Case B: 1 byte at a time, no timer.
*/

buf.c_cc[VMIN] = 1;

buf.c_cc[VTIME] = 0;

if (tcsetattr(fd, TCSAFLUSH, &buf) < 0)
return(-1) ;

/*
* Verify that the changes stuck. tcsetattr can return 0 on
* partial success.
*/
if (tcgetattr(fd, &buf) < 0) {
err = errno;
tcsetattr(fd, TCSAFLUSH, &save_termios);
errno = err;
return(-1); .
}
if ((buf.c 1flag & (ECHO | ICANON | IEXTEN | ISIG)) ||
(buf.c_iflag & (BRKINT | ICRNL | INPCK | ISTRIP | IXON)) ||

(buf.c _cflag & (CSIZE | PARENB | CS8)) != CS8 ||
(buf.c_oflag & OPOST) || buf.c_cc[VMIN] != 1 ||
buf.c _cc[VTIME] != 0) {

/*

* Only some of the changes were made. Restore the
* original settings.
*/

tcsetattr (£d, TCSAFLUSH, &save_termios);

errno = EINVAL;

return(-1);

}

ttystate = RAW;
ttysavefd = fd;

return(0) ;
reset (int £d) /* restore terminal’s mode */
if (ttystate == RESET)

return(0) ;

if (tcsetattr(fd, TCSAFLUSH, &save_termios) < 0)
return(-1);

ttystate = RESET;

return(0) ;
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void

tty atexit (void) /* can be set up by atexit(tty_ atexit) */

{

if

}

(ttysavefd >= 0)
tty reset (ttysavefd);

struct termios *
tty termios (void) /* let caller see original tty state */

{

return(&save termios) ;

}

Figure 18.20 Set terminal mode to cbreak or raw

Our definition of cbreak mode is the following:

Noncanonical mode. As we mentioned at the beginning of this section, this
mode turns off some input character processing. It does not turn off signal
handling, so the user can always type one of the terminal-generated signals. Be
aware that the caller should catch these signals, or there’s a chance that the
signal will terminate the program, and the terminal will be left in cbreak mode.

As a general rule, whenever we write a program that changes the terminal
mode, we should catch most signals. This allows us to reset the terminal mode
before terminating.

Echo off.

One byte at a time input. To do this, we set MIN to 1 and TIME to 0. This is case
B from Figure 18.19. A read won’t return until at least one byte is available.

We define raw mode as follows:

Noncanonical mode. We also turn off processing of the signal-generating
characters (ISIG) and the extended input character processing (IEXTEN).
Additionally, we disable a BREAK character from generating a signal, by turning
off BRKINT.

Echo off.

We disable the CR-to-NL mapping on input (ICRNL), input parity detection
(INPCK), the stripping of the eighth bit on input (ISTRIP), and output flow
control (IXON).

Eight-bit characters (CS8), and parity checking is disabled (PARENB).
All output processing is disabled (OPOST).
One byte at a time input (MIN = 1, TIME = 0).

The program in Figure 18.21 tests raw and cbreak modes.
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#include "apue.h"

static void

sig_

{

}

int

catch(int signo)

printf ("signal caught\n");
tty reset (STDIN_FILENO) ;
exit (0);

main (void)

{

int i;

char c;

if (signal (SIGINT, sig catch) == SIG_ERR) /* catch signals */
err sys("signal (SIGINT) error");

if (signal (SIGQUIT, sig_catch) == SIG_ERR)
err_sys("signal (SIGQUIT) error");

if (signal (SIGTERM, sig_catch) == SIG_ERR)

err_sys("signal (SIGTERM) error");

if (tty_raw(STDIN_FILENO) < 0)
err sys("tty raw error");
printf ("Enter raw mode characters, terminate with DELETE\n");
while ((i = read(STDIN_FILENO, &c, 1)) == 1) {
if ((c &= 255) == 0177) /* 0177 = ASCII DELETE */
break;
printf ("%o\n", c);
}
if (tty_reset (STDIN_FILENO) < 0)
err_sys({"tty_reset error");’
if (i <= 0)
err_sys("read error");
if (tty cbreak (STDIN_FILENO) < 0)
err_sys("tty_cbreak error");

printf ("\riEnter cbreak mode characters, terminate with SIGINT\n") ;

while ((i = read(STDIN_FILENO, &c, 1)) == 1) {
c &= 255;
printf ("$o\n", c);
}
if (tty_reset (STDIN_FILENO) < 0Q)
err_sys("tty reset error");
if (1 <= 0)
err sys("read error");

exit (0);

Figure 18.21 Test raw and cbreak terminal modes
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Running the program in Figure 18.21, we can see what happens with these two
terminal modes:
$ ./a.out
Enter raw mode characters, terminate with DELETE
4
33
133
61
70
176
type DELETE
Enter cbreak mode characters, terminate with SIGINT
1 type Control-A
10 type backspace
signal caught type interrupt key
In raw mode, the characters entered were Control-D (04) and the special function key
F7. On the terminal being used, this function key generated five characters: ESC (033), [
(0133), 1 (061), 8 (070), and ~(0176). Note that with the output processing turned off in-
raw mode (“OPOST), we do not get a carriage return output after each character. Also
note that special-character processing is disabled in cbreak mode (so, for example,
Control-D, the end-of-file character, and backspace aren’t handled specially), whereas
the terminal-generated signals are still processed. ]
18.12 Terminal Window Size

Most UNIX systems provide a way to keep track of the current terminal window size
and to have the kernel notify the foreground process group when the size changes. The
kernel maintains a winsize structure for every terminal and pseudo terminal:

struct winsize {
unsigned short ws_row; /* rows, in characters */
unsigned short ws_col; /* columns, in characters */
unsigned short ws_xpixel; /* horizontal size, pixels (unused) */
unsigned short ws_ypixel; /* vertical size, pixels (unused) */

}i
The rules for this structure are as follows.

* We can fetch the current value of this structure using an ioctl (Section 3.15) of
TIOCGWINSZ.

* We can store a new value of this structure in the kernel using an ioctl of
TIOCSWINSZ. If this new value differs from the current value stored in the
kernel, a SIGWINCH signal is sent to the foreground process group. (Note from
Figure 10.1 that the default action for this signal is to be ignored.)
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¢ Other than storing the current value of the structure and generating a signal
when the value changes, the kernel does nothing else with this structure.
Interpreting the structure is entirely up to the application.

The reason for providing this feature is to notify applications (such.as the vi editor)
when the window size changes. When it receives the signal, the application can fetch
the new size and redraw the screen.

Example
~ Figure 18.22 shows a program that prints the current window size and goes to sleep.

Each time the window size changes, SIGWINCH is caught and the new size is printed.
We have to terminate this program with a signal.

#include "apue.h"
#include <termios.h>
#ifndef TIOCGWINSZ
#include <sys/ioctl.h>
#endif '

static void
pr_winsize(int fd)

{

struct winsize size;

if (ioctl(fd, TIOCGWINSZ, (char *) &size) < 0)
err_sys({("TIOCGWINSZ error");
printf("%d rows, %d columns\n", size.ws_row, size.ws_col);

}

static void
sig_winch(int signo)

{
printf ("SIGWINCH received\n");
pr_winsize (STDIN_FILENO) ;

}

int

main(void)

{

if (isatty(STDIN_PILENO) == 0)
exit (1) ;

if (signal (SIGWINCH, sig_winch) == SIG_ERR)
err_sys("signal error");

pr_winsize (STDIN_FILENO) ; /* print initial size */

for ( ; ;) /* and sleep forever */
pause{) ;

Figure 18.22 Print window size
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Running the program in Figure 18.22 on a windowed terminal gives us

$ ./a.out

35 rows, 80 columns initial size

SIGWINCH received change window size: signal is caught
40 rows, 123 columns

SIGWINCH received and again

42 rows, 33 columns

"? 8 type the interrupt key to terminate

18.13 termcap, terminfo, and curses

termcap stands for “terminal capability,” and it refers to the text file /etc/termcap
and a set of routines to read this file. The termcap scheme was developed at Berkeley
to support the vi editor. The termcap file contains descriptions of various terminals:
what features the terminal supports (how many lines and rows, whether the terminal
support backspace, etc.) and how to make the terminal perform certain operations (clear
the screen, move the cursor to a given location, etc.). Taking this information out of the
compiled program and placing it into a text file that can easily be edited allows the vi
editor to run on many different terminals.

The routines that support the termcap file were then extracted from the vi editor
and placed into a separate curses library. Many features were added to make this
library usable for any program that wanted to manipulate the screen.

The termcap scheme was not perfect. As more and more terminals were added to
the data file, it took longer to scan the file, looking for a specific terminal. The data file
also used two-character names to identify the various terminal attributes. These
deficiencies led to development of the terminfo scheme and its associated curses
library. The terminal descriptions in terminfo are basically compiled versions of a
textual description and can be located faster at runtime. terminfo appeared with
SVR2 and has been in all System V releases since then.

Historically, System V-based systems used terminfo, and BSD-derived systems used
termcap, but it is now common for systems to provide both. Mac OS X, however, supports
only terminfo.

A description of terminfo and the curses library is provided by Goodheart [1991],
but this is currently out of print. Strang [1986] describes the Berkeley version of the
curses library. Strang, Mui, and O'Reilly [1988] provide a description of termcap and
terminfo.

The ncurses library, a free version that is compatible with the SVR4 curses interface, can be
found athttp://invisible-island.net/ncurses/ncurses.html.

Neither termcap nor terminfo, by itself, addresses the problems we’'ve been
looking at in this chapter: changing the terminal’s mode, changing one of the terminal
special characters, handling the window size, and so on. What they do provide is a way
to perform typical operations (clear the screen, move the cursor) on a wide variety of
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terminals. On the other hand, curses does help with some of the details that we've
addressed in this chapter. Functions are provided by curses to set raw mode, set
cbreak mode, turn echo on and off, and the like. But the curses library is designed for
character-based dumb terminals, which have mostly been replaced by pixel-based
graphics terminals today.

Summary

Terminals have many features and options, most of which we’re able to change to suit
our needs. In this chapter, we've described numerous functions that change a
terminal’s operation: special input characters and the option flags. We've looked at all
the terminal special characters and the many options that can be set or reset for a
terminal device.

There are two modes of terminal input—canonical (line at a time) and
noncanonical. We showed examples of both modes and provided functions that map
between the POSIX.1 terminal options and the older BSD cbreak and raw modes. We
also described how to fetch and change the window size of a terminal.

Exercises

18.1 Write a program that calls tty_raw and terminates (without resetting the terminal mode).
If your system provides the reset(1) command (all four systems described in this text do),
use it to restore the terminal mode.

18.2 The PARODD flag in the c_cflag field allows us to specify even or odd parity. The BSD
tip program, however, also allows the parity bit to be 0 or 1. How does it do this?

18.3 If your system’s stty(1) command outputs the MIN and TIME values, do the following
exercise. Log in to the system twice and start the vi editor from one login. Use the stty
command from your other login to determine what values vi sets MIN and TIME to (since
vi sets the terminal to noncanonical mode). (If you are running a windowing system on
your terminal, you can do this same test by logging in once and using two separate
windows instead.)
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Pseudo Terminals

Introduction

In Chapter 9, we saw that terminal logins come in through a terminal device,
automatically providing terminal semantics. A terminal line discipline (Figure 18.2)
exists between the terminal and the programs that we run, so we can set the terminal’s
special characters (backspace, line erase, interrupt, etc.) and the like. When a login
arrives on a network connection, however, a terminal line discipline is not automatically
provided between the incoming network connection and the login shell. Figure 9.5
showed that a pseudo-terminal device driver is used to provide terminal semantics.

In addition to network logins, pseudo terminals have other uses that we explore in
this chapter. We start with an overview on how to use pseudo terminals, followed by a
discussion of specific use cases. We then provide functions to create pseudo terminals
on various platforms and then use these functions to write a program that we call pty.
We'll show various uses of this program: making a transcript of all the character input
and output on the terminal (the script(1) program) and running coprocesses to avoid
the buffering problems we encountered in the program from Figure 15.19.

Overview

The term pseudo terminal implies that it looks like a terminal to an application program,
but it’s not a real terminal. Figure 19.1 shows the typical arrangement of the processes
involved when a pseudo terminal is being used. The key points in this figure are the
following,.

e Normally, a process opens the pseudo-terminal master and then calls fork. The
child establishes a new session, opens the corresponding pseudo-terminal slave,

675
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Figure 19.1 Typical arrangement of processes using a pseudo terminal

duplicates the file descriptor to the standard input, standard output, and
standard error, and then calls exec. The pseudo-terminal slave becomes the
controlling terminal for the child process.

* It appears to the user process above the slave that its standard input, standard
output, and standard error are a terminal device. The process can issue all the
terminal I/O functions from Chapter 18 on these descriptors. But since there is
not a real terminal device beneath the slave, functions that don’t make sense
(change the baud rate, send a break character, set odd parity, etc.) are just
ignored.

* Anything written to the master appears as input to the slave and vice versa.
Indeed, all the input to the slave comes from the user process above the
pseudo-terminal master. This behaves like a bidirectional pipe, but with the
terminal line discipline module above the slave, we have additional capabilities
over a plain pipe.

Figure 19.1 shows what a pseudo terminal looks like on a FreeBSD, Mac OS X, or Linux
system. In Sections 19.3.2 and 19.3.3, we show how to open these devices.

Under Solaris, a pseudo terminal is built using the STREAMS subsystem
(Section 14.4). Figure 19.2 details the arrangement of the pseudo-terminal STREAMS
modules under Solaris. The two STREAMS modules that are shown as dashed boxes
are optional. The pckt and ptem modules help provide semantics specific to pseudo
terminals. The other two modules (ldterm and ttcompat) provide line discipline

* processing.



